Next Issue
Volume 6, March
Previous Issue
Volume 5, September
 
 

Organics, Volume 5, Issue 4 (December 2024) – 17 articles

Cover Story (view full-size image): l-(+)-Furanomycin, a crucial substrate for isoleucyl aminoacyl-tRNA synthetase, replaces isoleucine during protein translation and exhibits antibacterial properties in vitro. Various synthetic approaches have been developed to produce l-(+)-Furanomycin and its analogs. This review focuses on total synthesis strategies and the biological significance of Furanomycin, a distinctive antibacterial agent with a non-proteinogenic amino acid core. It covers its isolation and diverse synthetic methodologies, including those using chiral substrates like carbohydrates and amino acids and alternative approaches with achiral starting materials like furans and cyclopentadiene. Methods relying on amino acids are particularly appealing, involving only six to seven steps for a swift and flexible process to access Furanomycin and its analogs. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 28274 KiB  
Article
Acetic Acid and Ethyl Acetate as Solvents for Electropolymerization Reactions, Considering 4-Methoxyphenol and Composition of Solvent Mixtures
by László Kiss and Péter Szabó
Organics 2024, 5(4), 670-683; https://doi.org/10.3390/org5040035 - 22 Dec 2024
Viewed by 589
Abstract
Various organic compounds susceptible to anodic polymerization were selected to study the effects of two solvents: acetic acid and ethyl acetate. Phenol and most of its derivatives, as well as resorcinol and 3,5-dihydroxybenzoic acid, exhibited typical electrode deactivation similar to other solvents; however, [...] Read more.
Various organic compounds susceptible to anodic polymerization were selected to study the effects of two solvents: acetic acid and ethyl acetate. Phenol and most of its derivatives, as well as resorcinol and 3,5-dihydroxybenzoic acid, exhibited typical electrode deactivation similar to other solvents; however, a continuous decrease in peak currents was not observed for 4-tert-butylphenols or salicylic aldehyde. Similar behavior was noted for monomers unrelated to phenols. In general, peaks were observed only for certain compounds and not in the initial voltammogram. Significant differences between the two solvents were observed in the subsequent voltammetric curves for some monomers. Microelectrode studies using 4-methoxyphenol as a model compound revealed notable differences between acetic acid and ethyl acetate in terms of curve shapes and the onset potentials of the plateaus. Plateau currents were used to estimate the solvent composition, demonstrating relatively high sensitivity to the acetic acid content. Full article
Show Figures

Figure 1

30 pages, 3195 KiB  
Review
Conducting Polymers in Solar Cells: Insights, Innovations, and Challenges
by Aliya Yelshibay, Sherif Dei Bukari, Bakhytzhan Baptayev and Mannix P. Balanay
Organics 2024, 5(4), 640-669; https://doi.org/10.3390/org5040034 - 20 Dec 2024
Viewed by 1071
Abstract
The pursuit of sustainable energy sources has led to significant advances in solar cell technology, with conducting polymers (CPs) emerging as key innovations. This review examines how CPs improve the performance and versatility of three important types of solar cells: dye-sensitized solar cells [...] Read more.
The pursuit of sustainable energy sources has led to significant advances in solar cell technology, with conducting polymers (CPs) emerging as key innovations. This review examines how CPs improve the performance and versatility of three important types of solar cells: dye-sensitized solar cells (DSSCs), perovskite solar cells (PSCs), and organic solar cells (OSCs). Polymers such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene) have shown significant potential to increase the efficiency of solar cells. In DSSCs, conducting polymers act as counter electrodes, electrolytes, and dyes, contributing to improved efficiency and stability. In PSCs, they serve as hole transport materials and electron transport materials that improve charge separation and reduce recombination losses. In OSCs, conducting polymers act as HTMs and active layers, significantly impacting device performance and enabling advances in both binary and ternary solar cell configurations. Recent research highlights the important role of conducting polymers in improving both the efficiency and stability of solar cells under different indoor and outdoor lighting conditions. Recent advances have led to impressive energy conversion efficiencies, particularly in low-light environments. This report also highlights the environmental and economic benefits associated with these materials. At the same time, it highlights the challenges associated with optimizing the materials, scalability, and ensuring long-term stability. Future research directions are outlined to overcome these obstacles and promote the commercial viability of next-generation solar technologies. Full article
Show Figures

Figure 1

17 pages, 4786 KiB  
Article
Unexpected Products of Salicylidene-Aminoguanidine Reactions with Metal Ions—Synthesis and Structural Aspects
by Mirjana M. Radanović, Ljiljana S. Vojinović-Ješić, Niko S. Radulović, Vidak N. Raičević, Vukadin M. Leovac and Marko V. Rodić
Organics 2024, 5(4), 623-639; https://doi.org/10.3390/org5040033 - 11 Dec 2024
Viewed by 577
Abstract
Due to the promising characteristics of aminoguanidine Schiff bases, ongoing research focuses on synthesizing and characterizing different compounds of this class to establish structure–property relationships. However, the pronounced alkalinity of the aminoguanidine residue makes isolating its Schiff bases in neutral form challenging. In [...] Read more.
Due to the promising characteristics of aminoguanidine Schiff bases, ongoing research focuses on synthesizing and characterizing different compounds of this class to establish structure–property relationships. However, the pronounced alkalinity of the aminoguanidine residue makes isolating its Schiff bases in neutral form challenging. In the reaction of salicylidene-aminoguanidine ([HL]NO3) with a strong base (NaOH), the partially neutralized product of the formula [HL]NO3∙L·H2O was obtained in the form of single crystals. This compound could be considered a cocrystal in which protonated and neutral forms of the Schiff base coexist. Furthermore, the coordinating properties of [HL]NO3 towards zinc and organotin were investigated, and instead of the expected crystals of complex compounds, a novel polymorph of the ligand was obtained. Additionally, the reaction of [HL]NO3, NH4VO3 and salicylaldehyde was carried out to achieve the condensation of the free NH2-group in the aminoguanidinium fragment, targeting a vanadium(V) complex with tetradentate ligand. However, a purely organic compound containing three salicylaldehyde residues and two imine groups, i.e., C21H18N2O3, was isolated. All the obtained compounds were characterized by elemental and spectroscopic analysis, conductometry and SC-XRD analysis. The data were compared to those of similar structures, and the results provide further insight into the properties of these compounds and their future investigation for potential usage. Full article
Show Figures

Figure 1

9 pages, 1190 KiB  
Article
Simple and Selective Determination of Free Chlorine in Aqueous Solutions by an Electrophilic Aromatic Substitution Reaction Followed by Liquid Chromatography Coupled with Mass Spectrometry
by Avital Shifrovitch, Moran Madmon, Tamar Shamai Yamin and Avi Weissberg
Organics 2024, 5(4), 614-622; https://doi.org/10.3390/org5040032 - 9 Dec 2024
Viewed by 719
Abstract
We developed a selective technique to rapidly measure free chlorine, which is the sum of elemental chlorine (Cl2), hypochlorous acid (HOCl), and hypochlorite (OCl) in water samples via an electrophilic aromatic substitution reaction hyphenated with liquid chromatography-electrospray ionization tandem [...] Read more.
We developed a selective technique to rapidly measure free chlorine, which is the sum of elemental chlorine (Cl2), hypochlorous acid (HOCl), and hypochlorite (OCl) in water samples via an electrophilic aromatic substitution reaction hyphenated with liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Sample preparation involved derivatization at 25 °C for 15 min with 3,4,5-trimethoxyphenylacetic acid (TMPAA) in an aqueous solution prior to analysis. Several parameters were evaluated to determine the optimized reaction and for the production of informative MS/MS spectrum of the derivatization product, 2-chloro-3,4,5-trimethoxyphenylacetic acid (Cl-TMPAA). The resulting Cl-TMPAA derivative displayed an informative ESI-MS/MS spectrum characterized by product ions at m/z 232.0142, 200.0245, and 185.0009 from the precursor ion at m/z 259.0379. The linear dynamic range of the method (0.1–10 µg/mL) was fitted to concentration levels relevant to forensic toxicology issues. Compared with other analytical techniques, this newly established LC-MS-based method demonstrated specificity, simplicity, and rapidity. This method enables the detection of free chlorine for forensic investigations in criminal cases. Full article
Show Figures

Figure 1

16 pages, 2195 KiB  
Article
Diastereomeric N,S-Dialkyl Dithiocarbamates Derived from (E)-Chalcones and ʟ-Tryptophan: Microwave-Assisted Synthesis and In Vitro Studies Against Fusarium oxysporum
by Natalia Agudelo-Ibañez, Sergio Torres-Cortés, Ericsson Coy-Barrera, Ivon Buitrago and Diego Quiroga
Organics 2024, 5(4), 598-613; https://doi.org/10.3390/org5040031 - 9 Dec 2024
Viewed by 1142
Abstract
The synthesis of indole phytoalexin-like analogs related to alkyl (((1-(4-substitutedphenyl)-3-oxo-3-phenylpropyl)thio)carbonothioyl)-ʟ-tryptophanate 1ad and the evaluation of their antifungal activity against the phytopathogen Fusarium oxysporum is reported. The target compounds were synthesized in the following two stages: (1) the initial esterification of ʟ-tryptophan, [...] Read more.
The synthesis of indole phytoalexin-like analogs related to alkyl (((1-(4-substitutedphenyl)-3-oxo-3-phenylpropyl)thio)carbonothioyl)-ʟ-tryptophanate 1ad and the evaluation of their antifungal activity against the phytopathogen Fusarium oxysporum is reported. The target compounds were synthesized in the following two stages: (1) the initial esterification of ʟ-tryptophan, which reacted with trimethyl silane chloride and simple aliphatic alcohols (R = Me, Et) under microwave irradiation (MWI) at 100 °C to obtain the respective alkyl ester 2ab; (2) the resulting mixture of ʟ-tryptophanates 2ab with carbon disulfide and (E)-chalcone 3ab under MWI at 50 °C during 60 min, followed by purification through classical column chromatography (55–76% yields). The products were obtained as mixtures of (S,R) and (S,S) diastereoisomers. An LC-DAD-MS analysis allowed us to establish the ratio of these diastereoisomers, and subsequent DFT/B3LYP-based computational calculations of the NMR 1H chemical shifts suggested that the major diastereoisomer involved an (S,R) absolute configuration, comprising more than 60% of the mixture. The compounds 1ad were subjected to an antifungal activity test against the phytopathogen F. oxysporum using an amended medium-based assay. Compound series 1 showed inhibition percentages of 80% at the first concentration and IC50 values between 0.33 and 5.71 mM, demonstrating greater potential as antifungal agents compared to other ʟ-tryptophan derivatives like alkyl (2S)-3-(1H-indol-3-yl)-2-{[(1Z)-3-oxobut-1-en-1-yl]amino}propanoate, which presented lower inhibition percentages. In summary, phytoalexin analogs derived from ʟ-tryptophan and (E)-chalcones significantly inhibited the mycelial growth of Fusarium oxysporum, indicating their potential as effective antifungal agents. Full article
Show Figures

Graphical abstract

23 pages, 7915 KiB  
Review
An Overview of Pyrazole-Tetrazole-Based Hybrid Compounds: Synthesis Methods, Biological Activities and Energetic Properties
by Mounir Cherfi, Tarik Harit, Malika Amanchar, Ahlam Oulous and Fouad Malek
Organics 2024, 5(4), 575-597; https://doi.org/10.3390/org5040030 - 5 Dec 2024
Viewed by 892
Abstract
Pyrazole and tetrazole are among the most important heterocyclic members of the azole family. Over the past decade, these N-heterocycles and their derivatives have demonstrated specific properties that give them potent applications in several fields such as pharmacology, technology, and agriculture. Combining these [...] Read more.
Pyrazole and tetrazole are among the most important heterocyclic members of the azole family. Over the past decade, these N-heterocycles and their derivatives have demonstrated specific properties that give them potent applications in several fields such as pharmacology, technology, and agriculture. Combining these two azoles in single hybrid architecture has given rise to highly potent molecules in terms of efficacy and specificity, with enhanced and scalable properties. In this context, the present paper deals with the literature of the last 10 years describing the synthesis protocols for pyrazole-tetrazole-based molecules. Their biological activities as well as their energetic properties are also reported. Full article
(This article belongs to the Special Issue Chemistry of Heterocyclic Compounds)
Show Figures

Figure 1

14 pages, 2205 KiB  
Article
A New Generation of Porous Polymer Materials from Polystyrene Waste: Synthesis and Adsorption of Nitrate Anions in Aqueous Media
by Mohamed Anannaz, Fatiha Tafraout, Charaf Laghlimi, Rachida Ouaabou and Jalal Isaad
Organics 2024, 5(4), 561-574; https://doi.org/10.3390/org5040029 - 28 Nov 2024
Viewed by 739
Abstract
A simple approach was developed to efficiently graft diethylene triamine onto polystyrene waste using succinic anhydride as a tracer to remove nitrate anions from aqueous solutions. Infrared spectroscopic data showed characteristic signs at 3395 cm−1 and 1695 cm−1 corresponding to N-H [...] Read more.
A simple approach was developed to efficiently graft diethylene triamine onto polystyrene waste using succinic anhydride as a tracer to remove nitrate anions from aqueous solutions. Infrared spectroscopic data showed characteristic signs at 3395 cm−1 and 1695 cm−1 corresponding to N-H and C=O (ester and amide), confirming the grafting of DETA onto PS. The zeta potential study showed that the PS-Succ-DETA adsorbent had a pHiep of 8.2, and its charge was positive when the pH was lower than the pHiep. Parameters affecting nitrate adsorption, such as dosage, initial concentration, pH, and contact time, were studied. The adsorption data corresponded well to the Langmuir isotherm with an R2 correlation coefficient of 0.998, and the adsorption capacity was found to be 195.65 mg/g. The adsorption kinetics of NO3 ions by PS-Succ-DETA corresponded perfectly to the PS-II model, with an R2 coefficient of 0.999. The negative value of ΔG (−10.02 kJ/mol), ΔH (−18.76 kJ/mol), and ΔS (−28.83 J/K/mol) indicates that NO3- adsorption is spontaneous exothermic and suggests a decrease in randomness at the solid-liquid interface during the adsorption. The mechanism of adsorption of nitrate ions onto PS-Succ-DETA occurs via electrostatic interactions and hydrogen bonds between the NO3 ions and the -NH2 and NH functions of PS-Succ-DETA. Full article
Show Figures

Graphical abstract

41 pages, 7926 KiB  
Review
Advances in Organic Materials for Next-Generation Optoelectronics: Potential and Challenges
by Ghazi Aman Nowsherwan, Qasim Ali, Umar Farooq Ali, Muhammad Ahmad, Mohsin Khan and Syed Sajjad Hussain
Organics 2024, 5(4), 520-560; https://doi.org/10.3390/org5040028 - 11 Nov 2024
Viewed by 2407
Abstract
This review provides a comprehensive overview of recent advancements in the synthesis, properties, and applications of organic materials in the optoelectronics sector. The study emphasizes the critical role of organic materials in the development of state-of-the-art optoelectronic devices such as organic solar cells, [...] Read more.
This review provides a comprehensive overview of recent advancements in the synthesis, properties, and applications of organic materials in the optoelectronics sector. The study emphasizes the critical role of organic materials in the development of state-of-the-art optoelectronic devices such as organic solar cells, organic thin-film transistors, and OLEDs. The review further examines the structure, operational principles, and performance metrics of organic optoelectronic devices. Organic materials have emerged as promising candidates due to their low-cost production and potential for large-area or flexible substrate applications. Additionally, this review highlights the physical mechanisms governing the optoelectronic properties of high-performance organic materials, particularly photoinduced processes relevant to charge carrier photogeneration. It discusses the unique benefits of organic materials over traditional inorganic materials, including their light weight, simple processing, and flexibility. The report delves into the challenges related to stability, scalability, and performance, while highlighting the wide range of electronic properties exhibited by organic materials, which are critical for their performances in optoelectronic devices. Furthermore, it addresses the need for further research and development in this field to achieve consistent performance across different types of devices. Full article
Show Figures

Graphical abstract

13 pages, 1702 KiB  
Article
Synthesis of Thieno[3,2-b]thiophenes from 2,5-Dicarbonyl 3-Nitrothiophenes via Nucleophilic Aromatic Substitution of the Nitro Group with Thiolates
by Roman A. Irgashev and Nikita A. Kazin
Organics 2024, 5(4), 507-519; https://doi.org/10.3390/org5040027 - 7 Nov 2024
Viewed by 953
Abstract
In this study, we developed an efficient strategy for constructing thieno[3,2-b]thiophene molecules from 3-nitrothiophenes, containing carbonyl fragments at the C-2 and C-5 atoms, by nucleophilic aromatic substitution of the nitro group in these substrates. It was shown that the reaction of [...] Read more.
In this study, we developed an efficient strategy for constructing thieno[3,2-b]thiophene molecules from 3-nitrothiophenes, containing carbonyl fragments at the C-2 and C-5 atoms, by nucleophilic aromatic substitution of the nitro group in these substrates. It was shown that the reaction of 3-nitrothiophene-2,5-dicarboxylates with thiophenols, thioglycolates and 2-mercaptoacetone in the presence of K2CO3 proceeds rapidly via nucleophilic displacement of the nitro group with the formation of 3-sulfenylthiophene-2,5-dicarboxylates. Further treatment of the resulting thiophene-2,5-dicarboxylates, which have -SCH2CO2Alk or -SCH2COMe moiety at C-3 atom, with sodium alcoholates afford obtaining 2,3,5-trisubstituted thieno[3,2-b]thiophene derivatives according to the Dieckman condensation. In turn, the reaction of methyl 5-formyl-4-nitrothiophene-2-carboxylate with methyl thioglycolate or 2-mercaptoacetone in the presence of K2CO3 proceeds to directly form 2,5-disubstituted thieno[3,2-b]thiophenes. Full article
Show Figures

Scheme 1

14 pages, 3305 KiB  
Article
1,5-Acrylodan: A Fluorescent Bioconjugate Sensor of Protic Environments
by Jake Morrin, Matthew Petitt and Christopher Abelt
Organics 2024, 5(4), 493-506; https://doi.org/10.3390/org5040026 - 7 Nov 2024
Viewed by 792
Abstract
1,5-Acrylodan (1-(5-(dimethylamino)naphthalen-1-yl)prop-2-en-1-one) is prepared in six steps from 1-nitronaphthalene and 19% overall yield. The last three steps involve an aryllithium-directed nucleophilic addition, catalytic Kulinkovich cyclopropanation, and copper-catalyzed oxidative ring-opening to generate the acryloyl moiety. The fluorescent properties of 1,5-Acrylodan (AC) are reported. These [...] Read more.
1,5-Acrylodan (1-(5-(dimethylamino)naphthalen-1-yl)prop-2-en-1-one) is prepared in six steps from 1-nitronaphthalene and 19% overall yield. The last three steps involve an aryllithium-directed nucleophilic addition, catalytic Kulinkovich cyclopropanation, and copper-catalyzed oxidative ring-opening to generate the acryloyl moiety. The fluorescent properties of 1,5-Acrylodan (AC) are reported. These include its solvatochromism and H-bond quenching by protic solvents. Its use as a bioconjugate sensor is demonstrated with Human Serum Albumin (HSA) through its covalent attachment to Human Serum Albumin (HSA) at the free cysteine-34 moiety. Unfolding studies with guanidinium chloride (GdmCl) and sodium dodecyl sulfate (SDS) are conducted to illustrate how the fluorophore responds to changes in both micropolarity and exposure to water. Full article
Show Figures

Figure 1

21 pages, 6199 KiB  
Review
A Comprehensive Review on the Total Synthesis of Antibacterial Furanomycin and Its Analogs
by Rajendra Rohokale and Rajendra Mane
Organics 2024, 5(4), 472-492; https://doi.org/10.3390/org5040025 - 5 Nov 2024
Viewed by 1057
Abstract
l-(+)-Furanomycin 1 is a miniature antibacterial natural product that contains an α-amino acid core. This non-proteinogenic α-amino acid was first isolated in 1967 by Katagiri and co-workers from the fermentation broth of Streptomyces threomyceticus L-803 (ATCC 15795). It is a substrate [...] Read more.
l-(+)-Furanomycin 1 is a miniature antibacterial natural product that contains an α-amino acid core. This non-proteinogenic α-amino acid was first isolated in 1967 by Katagiri and co-workers from the fermentation broth of Streptomyces threomyceticus L-803 (ATCC 15795). It is a substrate of isoleucyl aminoacyl-tRNA synthetase that replaces isoleucine in the protein translation process and exhibits antibacterial properties in vitro. It effectively acts as an antibacterial agent against M. tuberculosis, E. coli, B. subtilis, and some Shigella and Salmonella bacterial species at concentrations as low as the micromolar range. Consequently, synthetic chemists have garnered considerable interest from their specific structure–activity profile, distinctive chemical compositions, and distinct biological profile. This review comprehensively describes cutting-edge synthetic methodologies for synthesizing furanomycin and its analogs reported to date. Therefore, this review will offer an initial perspective on synthesizing furanomycin and its customized compounds. Full article
(This article belongs to the Special Issue Chemistry of Heterocyclic Compounds)
Show Figures

Graphical abstract

22 pages, 7849 KiB  
Review
Recent Developments Towards the Synthesis of Triazole Derivatives: A Review
by Issam Ameziane El Hassani, Khouloud Rouzi, Anouar Ameziane El Hassani, Khalid Karrouchi and M’hammed Ansar
Organics 2024, 5(4), 450-471; https://doi.org/10.3390/org5040024 - 24 Oct 2024
Cited by 2 | Viewed by 2405
Abstract
The triazole scaffold is a crucial component of heterocyclic chemistry, serving as a basic building block in organic synthesis, materials science, and medicinal chemistry. Triazole is a five-membered ring composed of three nitrogen atoms and two carbon atoms, and it exists in two [...] Read more.
The triazole scaffold is a crucial component of heterocyclic chemistry, serving as a basic building block in organic synthesis, materials science, and medicinal chemistry. Triazole is a five-membered ring composed of three nitrogen atoms and two carbon atoms, and it exists in two isomeric forms: 1,2,3-triazole and 1,2,4-triazole. Compounds featuring the triazole ring are important heterocycles known for their diverse biological activities, including antimicrobial, antiproliferative, antimalarial, anticonvulsant, anti-inflammatory, antineoplastic, antiviral, analgesic, and anticancer properties. As a result, triazole derivatives have attracted significant attention from researchers. This review aims to provide a thorough overview of the published studies on the synthesis of triazole derivatives, highlighting various methods for obtaining the triazole moiety. These methods include classical approaches as well as microwave and ultrasound-assisted techniques. Full article
Show Figures

Figure 1

7 pages, 996 KiB  
Communication
Pd EnCat™ 30 Recycling in Suzuki Cross-Coupling Reactions
by Laura D’Andrea and Casper Steinmann
Organics 2024, 5(4), 443-449; https://doi.org/10.3390/org5040023 - 22 Oct 2024
Viewed by 1049
Abstract
Pd EnCat™ 30 is a palladium catalyst broadly used in several hydrogenation and cross-coupling reactions. It is known for its numerous beneficial features, which include high-yielding performance, easy recovery, and reusability. However, the available data regarding its recyclability in Suzuki coupling reactions are [...] Read more.
Pd EnCat™ 30 is a palladium catalyst broadly used in several hydrogenation and cross-coupling reactions. It is known for its numerous beneficial features, which include high-yielding performance, easy recovery, and reusability. However, the available data regarding its recyclability in Suzuki coupling reactions are limited to a few reaction cycles and, therefore, fail to explore its full potential. Our work focuses on investigating the extent of Pd EnCat™ 30 reusability in Suzuki cross-coupling reactions by measuring its performance according to isolated yields of product. Our findings demonstrate that Pd EnCat™ 30 can be reused over a minimum of 30 reaction cycles, which is advantageous in terms of cost reduction and more sustainable chemical production. Full article
Show Figures

Figure 1

14 pages, 943 KiB  
Review
Application of Peptide-Conjugated Photosensitizers for Photodynamic Cancer Therapy: A Review
by Nuno Vale, Raquel Ramos, Inês Cruz and Mariana Pereira
Organics 2024, 5(4), 429-442; https://doi.org/10.3390/org5040022 - 21 Oct 2024
Cited by 1 | Viewed by 1035
Abstract
Photodynamic therapy (PDT) is a clinically approved therapeutic option for the treatment of various types of cancer. PDT calls for the application of photosensitizers (PSs) and photoactivation with a particular light wavelength while tissue oxygen is present. Anticancer efficacy depends on the combination [...] Read more.
Photodynamic therapy (PDT) is a clinically approved therapeutic option for the treatment of various types of cancer. PDT calls for the application of photosensitizers (PSs) and photoactivation with a particular light wavelength while tissue oxygen is present. Anticancer efficacy depends on the combination of these three substrates leading to the generation of cytotoxic reactive oxygen species (ROS) that promote apoptosis, necrosis, and autophagy of cancer cells. However, one of the biggest problems with conventional PDT is the poor accumulation and targeting of PSs to tumor tissues, resulting in undesirable side effects and unfavorable therapeutic outcomes. To overcome this, new photosensitizers have been developed through bioconjugation and encapsulation with targeting molecules, such as peptides, allowing a better accumulation and targeting in tumor cells. Several studies have been conducted to test the efficacy of several peptide-conjugated photosensitizers and improve PDT efficacy. This review aims to present current insights into various types of peptide-conjugated photosensitizers, with the goal of enhancing cancer treatment efficacy, addressing the limitations of conventional PDT, and expanding potential applications in medicine. Full article
Show Figures

Figure 1

34 pages, 6479 KiB  
Review
Aldehydes: What We Should Know About Them
by Alessia Catalano, Annaluisa Mariconda, Assunta D’Amato, Domenico Iacopetta, Jessica Ceramella, Maria Marra, Carmela Saturnino, Maria Stefania Sinicropi and Pasquale Longo
Organics 2024, 5(4), 395-428; https://doi.org/10.3390/org5040021 - 21 Oct 2024
Viewed by 4046
Abstract
From Egyptian mummies to the Chanel N° 5 perfume, aldehydes have been used for a long time and continue to impact our senses in a wide range of perfumes, foods, and beverages. Aldehydes represent one of the categories of volatile organic compounds (VOCs), [...] Read more.
From Egyptian mummies to the Chanel N° 5 perfume, aldehydes have been used for a long time and continue to impact our senses in a wide range of perfumes, foods, and beverages. Aldehydes represent one of the categories of volatile organic compounds (VOCs), which are categorized as chemicals with boiling points up to 260 °C and can be found in indoor environments in the gaseous phase. Because of their potential or known hazardous properties for humans, the World Health Organization (WHO)-Europe provided some guidelines that may prevent several health risks. Indeed, some aldehydes, reported to be risky for humans, have been retired from the market, such as butylphenyl methylpropional (BMHCA). The purpose of this review is to summarize the most important aldehydes found indoors and outdoors and analyse in depth the toxicological aspects of these compounds, whose presence in perfumes is often underestimated. In addition, the ingredients’ synonyms that are reported in the literature for the same compound were unified in order to simplify their identification. Full article
Show Figures

Figure 1

17 pages, 7313 KiB  
Article
Synthesis of Isoxazol-5-One Derivatives Catalyzed by Amine-Functionalized Cellulose
by Sanaz Gharehassanlou and Hamzeh Kiyani
Organics 2024, 5(4), 378-394; https://doi.org/10.3390/org5040020 - 12 Oct 2024
Viewed by 1252
Abstract
In this contribution, propylamine-functionalized cellulose (Cell-Pr-NH2) was employed as the catalyst in the three-component reaction between hydroxylamine hydrochloride and various types of aryl/heteroaryl aldehydes, ethyl acetoacetate/ethyl 4-chloroacetoacetate, or ethyl 3-oxohexanoate. The result of these experiments was the formation of 3,4-disubstituted isoxazol-5(4 [...] Read more.
In this contribution, propylamine-functionalized cellulose (Cell-Pr-NH2) was employed as the catalyst in the three-component reaction between hydroxylamine hydrochloride and various types of aryl/heteroaryl aldehydes, ethyl acetoacetate/ethyl 4-chloroacetoacetate, or ethyl 3-oxohexanoate. The result of these experiments was the formation of 3,4-disubstituted isoxazol-5(4H)-one heterocycles. The desired five-membered heterocyclic compounds were obtained in good to high yields at room temperature. The investigation of different solvents led us to the conclusion that water is the best solvent to perform the current one-pot, three-component reactions. Attempts to find the optimal catalyst loading clearly showed that 14 mg of cell-Pr-NH2 seems to be sufficient to carry out the reactions. This method has highlighted some principles of green chemistry including less waste generation, atom economy, use of water as an environmentally friendly solvent, and energy saving. Purification without chromatographic methods, mild reaction conditions, simple work-up, low-cost reaction medium, saving time, and obtainable precursors are other notable features of this one-pot fashion. Full article
Show Figures

Figure 1

17 pages, 1883 KiB  
Review
Polycyclic Tetramate Macrolactams and Their Potential as Anticancer Agents
by Alexandria Montavon, M. Raquel Marchán-Rivadeneira and Yong Han
Organics 2024, 5(4), 361-377; https://doi.org/10.3390/org5040019 - 27 Sep 2024
Viewed by 1307
Abstract
Natural products have been a reliable source of drug compounds in medical research. Technological advances have led to the discovery and characterization of many compounds that were previously difficult to isolate. However, when searching for anticancer drugs, finding natural compounds that can bind [...] Read more.
Natural products have been a reliable source of drug compounds in medical research. Technological advances have led to the discovery and characterization of many compounds that were previously difficult to isolate. However, when searching for anticancer drugs, finding natural compounds that can bind to specific targets is a daunting task. Polycyclic tetramate macrolactams (PoTeMs), specifically, have been a source of antibiotics for a long time, though they possess certain cytotoxic properties that make them attractive candidates for anticancer drug discovery. This review covers the structural diversity and widespread availability of PoTeM compounds and the past research that demonstrates their effects on human cancer cell lines. Additionally, this review documents the known receptors and molecular mechanisms of these compounds in mammalian cells. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop