Reservoir Adaptability Evaluation and Application Technology of Carbon Quantum Dot Fluorescent Tracer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Method of Infrared Spectroscopy Test
2.2.2. Method of ζ-Potential Test and Particle Size Characterization
2.2.3. Method of Fluorescence Characteristics Test
2.2.4. Method of Reservoir Suitability Evaluation
2.2.5. Static Adsorption Experiments
2.2.6. Core Flow Experiments
3. Results and Discussion
3.1. Characterization Analysis of CQD-W
3.1.1. Infrared Spectral Analysis of CQD-W
3.1.2. ζ-Potential Analysis of CQD-W
3.1.3. Particle Size Test Analysis of CQD-W
3.2. Analysis of CQD-W Fluorescence Characteristics
3.2.1. Three-Dimensional Fluorescence Characterization of CQD-W
3.2.2. Standard Curve of CQD-W
3.3. Reservoir Suitability Analysis of CQD-W
3.3.1. Stability Analysis of CQD-W
3.3.2. Solubility of CQD-W in Oil and Water
3.3.3. Static Adsorption Experiments of CQD-W
3.4. Core Flow Experiment
3.4.1. Injectivity and Brine Flow Variability Analysis of CQD-W
3.4.2. Description of Cores by CQD-W
4. Conclusions
- (1)
- CQD-W three-dimensional fluorescence spectrogram shows that the three-dimensional fluorescence peak is a single peak that has better differentiation in practical application detection. The minimum detection limit of CQD-W reaches 10−8. CQD-W has the advantage of small dosage, convenient detection, and the luminescence situation of CQD-W is very little affected by temperature, mineralization, and pH.
- (2)
- In the core flow experiment, after injecting a 0.1 PV small section plug CQD-W tracer in two sections of cores with little difference in permeability, the permeability of slightly larger cores saw the CQD-W first. This shows that CQD-W can distinguish the superior channel with higher permeability and has excellent tracer resolution. At the same time, CQD-W has an excellent flow ability and will not change the internal pore structure of the core during the flow, making it more difficult to produce reservoir damage. The cumulative recovery rate in the low and high permeability cores reached 97.41% and 96.57%, respectively, primarily because CQD-W has negative electricity and the negative core has a repulsive effect between the two.
- (3)
- CQD-W testing and characterization, reservoir suitability analysis, and core flow experiments can verify that CQD-W meets the performance requirements of conventional tracers and, to a certain extent, proves the possibility of CQD-W’s future application in oil field sites. It can also provide in-depth guidance on the preparation of target CQD-W materials and broaden the application fields of carbon quantum dots.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, J.; Zhang, P.; Tian, S.; Sheng, M.; Xu, Q.; Lu, Z. Carbon Dots as Fluorescent Sensitive Tracers in Reservoir Engineering. In Proceedings of the ARMA-CUPB Geothermal International Conference, Beijing, China, 5–8 August 2019. [Google Scholar]
- Murugesan, S.; Kuznetsov, O.; Suresh, R.; Agrawal, D.; Monteiro, O.; Khabashesku, V.N. Carbon Quantum Dots Fluorescent Tracers for Production and Well Monitoring. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 26–28 September 2016. [Google Scholar]
- Pu, C.; Jing, C.; He, Y.; Gu, X.; Zhang, Z.; Wei, J. Multistage interwell chemical tracing for step-by-step profile control of water channeling and flooding of fractured ultra-low permeability reservoirs. Pet. Explor. Dev. 2016, 43, 679–688. [Google Scholar] [CrossRef]
- Torrealba, V.A.; Hoteit, H.; Chawathe, A. Improving Chemical-Enhanced-Oil-Recovery Simulations and Reducing Subsurface Uncertainty Using Downscaling Conditioned to Tracer Data. SPE Reserv. Eval. Eng. 2019, 22, 1426–1435. [Google Scholar] [CrossRef]
- Hutchins, R.D.; Dovan, H.T.; Sandiford, B.B. Aqueous Tracers for Oilfield Applications. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Anaheim, CA, USA, 20–22 February 1991. [Google Scholar]
- Zhao, B.; Panthi, K.; Mohanty, K.K. Tracer eluting proppants for hydraulic fracture characterization. J. Pet. Sci. Eng. 2020, 190, 107048. [Google Scholar] [CrossRef]
- Franco, C.A.; Candela, C.H.; Gallego, J.; Marin, J.; Patiño, L.E.; Ospina, N.; Patiño, E.; Molano, M.; Villamil, F.; Bernal, K.M.; et al. Easy and Rapid Synthesis of Carbon Quantum Dots from Mortiño (Vaccinium Meridionale Swartz) Extract for Use as Green Tracers in the Oil and Gas Industry: Lab-to-Field Trial Development in Colombia. Ind. Eng. Chem. Res. 2020, 59, 11359–11369. [Google Scholar] [CrossRef]
- Sharma, A.N.; Luo, D.; Walter, M.T. Hydrological Tracers Using Nanobiotechnology: Proof of Concept. Environ. Sci. Technol. 2012, 46, 8928–8936. [Google Scholar] [CrossRef]
- Maldonado-Domínguez, M.; González-Antonio, O.; Díaz-Paulino, L.E.; Cañas-Alonso, R.C.; Xochitiotzi-Flores, E.; Jiménez-García, C.A.; Almaraz-Girón, M.A.; Luna-Pabello, V.M.; Romero-Ávila, M.; Barragán-Aroche, F.; et al. Passive organic cationic tracers for carbonate formations: Development and performance at oil reservoir emulating conditions. Fuel 2021, 304, 121377. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Xu, X.; Caswell, K.K.; Tucker, E.; Kabisatpathy, S.; Brodhacker, K.L.; Scrivens, W.A. Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J. Chromatogr. A 2007, 1167, 35–41. [Google Scholar] [CrossRef]
- Jana, J.; Lee, H.J.; Chung, J.S.; Kim, M.H.; Hur, S.H. Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing and cell-imaging. Anal. Chim. Acta 2019, 1079, 212–219. [Google Scholar] [CrossRef]
- Pichardo-Molina, J.L.; Cardoso-Avila, P.E.; Flores-Villavicencio, L.L.; Gomez-Ortiz, N.M.; Rodriguez-Rivera, M.A. Fluorescent carbon nanoparticles synthesized from bovine serum albumin nanoparticles. Int. J. Biol. Macromol. 2020, 142, 724–731. [Google Scholar] [CrossRef]
- Wang, T.; Luo, H.; Jing, X.; Yang, J.; Huo, M.; Wang, Y. Synthesis of Fluorescent Carbon Dots and Their Application in Ascorbic Acid Detection. Molecules 2021, 26, 1246. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-W.; Lin, Y.-F.; Li, Y.-X.; Hu, C.-C.; Chiu, T.-C. Synthesis of Fluorescent Carbon Dots as Selective and Sensitive Probes for Cupric Ions and Cell Imaging. Molecules 2019, 24, 1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, K.M.; Tran, T.S.; Tung, T.T.; Losic, D.; Kim, T. Water Soluble Fluorescent Carbon Nanodots from Biosource for Cells Imaging. J. Nanomater. 2017, 7029731. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, K.M.; Tran, T.S.; Kim, Y.J.; Kim, T. Green Fluorescent Onion-Like Carbon Nanoparticles from Flaxseed Oil for Visible Light Induced Photocatalytic Applications and Label-Free Detection of Al(III) Ions. ACS Sustain. Chem. Eng. 2017, 5, 3982–3992. [Google Scholar] [CrossRef]
- Li, L.; Zhao, F.; Zhang, T.; Lü, C. A facile method to prepare polymer functionalized carbon dots inspired by the mussel chemistry for LED application. Dye. Pigment. 2019, 162, 845–854. [Google Scholar] [CrossRef]
- Sai, L.; Liu, S.; Qian, X.; Yu, Y.; Xu, X. Nontoxic fluorescent carbon nanodot serving as a light conversion material in plant for UV light utilization. Colloids Surf. B: Biointerfaces 2018, 169, 422–428. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. Chemosphere 2021, 263, 128005. [Google Scholar] [CrossRef]
- Zhao, D.L.; Chung, T.-S. Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water Res. 2018, 147, 43–49. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, R.; Singh, D.P.; Savu, R.; Moshkalev, S.A. Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: A review. Mater. Today Chem. 2019, 12, 282–314. [Google Scholar] [CrossRef]
- Langer, M.; Paloncýová, M.; Medveď, M.; Pykal, M.; Nachtigallová, D.; Shi, B.; Aquino, A.J.A.; Lischka, H.; Otyepka, M. Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Appl. Mater. Today 2021, 22, 100924. [Google Scholar] [CrossRef]
- Sharma, S.; Umar, A.; Sood, S.; Mehta, S.K.; Kansal, S.K. Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications. J. Alloy. Compd. 2018, 748, 818–853. [Google Scholar] [CrossRef]
- Shi, X.; Yan, L.; Fan, S.; Huang, Y.; Xu, H.; Lai, N. Indoor synthesis of carbon quantum dots and its potential applications study as tracers in oilfields. J. Pet. Sci. Eng. 2022, 213, 110325. [Google Scholar] [CrossRef]
- Tang, X.; Yu, H.; Bui, B.; Wang, L.; Xing, C.; Wang, S.; Chen, M.; Hu, Z.; Chen, W. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact. Mater. 2021, 6, 1541–1554. [Google Scholar] [CrossRef]
- Kumar, A.; Asu, S.; Mukherjee, P.; Singh, P.; Kumari, A.; Sahu, S.K. Single-step synthesis of N-doped carbon dots and applied for dopamine sensing, in vitro multicolor cellular imaging as well as fluorescent ink. J. Photochem. Photobiol. A Chem. 2021, 406, 113019. [Google Scholar] [CrossRef]
- Zhu, P.; Tan, K.; Chen, Q.; Xiong, J.; Gao, L. Origins of Efficient Multiemission Luminescence in Carbon Dots. Chem. Mater. 2019, 31, 4732–4742. [Google Scholar] [CrossRef]
- Sun, Z.; Li, X.; Wu, Y.; Wei, C.; Zeng, H. Origin of green luminescence in carbon quantum dots: Specific emission bands originate from oxidized carbon groups. New J. Chem. 2018, 42, 4603–4611. [Google Scholar] [CrossRef]
- Bao, L.; Liu, C.; Zhang, Z.L.; Pang, D.W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667. [Google Scholar] [CrossRef]
- Myint, A.A.; Rhim, W.-K.; Nam, J.-M.; Kim, J.; Lee, Y.-W. Water-soluble, lignin-derived carbon dots with high fluorescent emissions and their applications in bioimaging. J. Ind. Eng. Chem. 2018, 66, 387–395. [Google Scholar] [CrossRef]
- Zhong, Y.; Xue, F.; Wei, P.; Li, R.; Cao, C.; Yi, T.J.N. Water-soluble MoS2 quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect. Nanoscale 2018, 10, 21298–21306. [Google Scholar] [CrossRef]
- Yang, X.-C.; Li, Q.; Tang, M.; Yang, Y.-L.; Yang, W.; Hu, J.-F.; Pu, X.-L.; Liu, J.; Zhao, J.-T.; Zhang, Z.-J. One Stone, Two Birds: pH- and Temperature-Sensitive Nitrogen-Doped Carbon Dots for Multiple Anticounterfeiting and Multiple Cell Imaging. ACS Appl. Mater. Interfaces 2020, 12, 20849–20858. [Google Scholar] [CrossRef]
- Panwar, N.; Soehartono, A.M.; Chan, K.K.; Zeng, S.; Xu, G.; Qu, J.; Coquet, P.; Yong, K.-T.; Chen, X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem. Rev. 2019, 119, 9559–9656. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, H.; Ramisetti, S.B.; Zhao, J.; Nourafkan, E.; Glover, P.W.J.; Wen, D. Carbon quantum dots with tracer-like breakthrough ability for reservoir characterization. Sci. Total Environ. 2019, 669, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Hassanzadeh, S.; Adolfsson, K.H.; Hakkarainen, M. Controlling the cooperative self-assembly of graphene oxide quantum dots in aqueous solutions. RSC Advances, 2015; 5, 57425–57432. [Google Scholar]
- Jiang, H.-Y.; Qin, S.-Q.; Chen, J.-J.; Dai, J.-J.; Lin, B.; Gao, C.-Y.; Ruan, X.-X.; Yang, Y.-Q.; Liu, J.-X. Reservoir Adaptability Evaluation of Core-shell Fluorescent Nanotracers. Contemporary Chemical Industry. 2022, 51, 1572–1576. [Google Scholar]
- Guo, Y.-J.; Liu, J.-X.; Zhang, X.-M.; Feng, R.-S.; Li, H.-B.; Zhang, J.; Lv, X.; Luo, P.-Y. Solution Property Investigation of Combination Flooding Systems Consisting of Gemini–Non-ionic Mixed Surfactant and Hydrophobically Associating Polyacrylamide for Enhanced Oil Recovery. Energy Fuels 2012, 26, 2116–2123. [Google Scholar] [CrossRef]
- Ding, H.; Yu, S.-B.; Wei, J.-S.; Xiong, H.-M. Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano 2016, 10, 484–491. [Google Scholar] [CrossRef]
- Li, Y.-X.; Lee, J.-Y.; Lee, H.; Hu, C.-C.; Chiu, T.-C. Highly fluorescent nitrogen-doped carbon dots for selective and sensitive detection of Hg2+ and ClO− ions and fluorescent ink. J. Photochem. Photobiol. A Chem. 2021, 405, 112931. [Google Scholar] [CrossRef]
- Hwang, C.-C.; Wang, L.; Lu, W.; Ruan, G.; Kini, G.C.; Xiang, C.; Samuel, E.L.; Shi, W.; Kan, A.T.; Wong, M.S. Highly stable carbon nanoparticles designed for downhole hydrocarbon detection. Energy Environ. Sci. 2012, 5, 8304–8309. [Google Scholar] [CrossRef]
- Hwang, C.-C.; Ruan, G.; Wang, L.; Zheng, H.; Samuel, E.L.; Xiang, C.; Lu, W.; Kasper, W.; Huang, K.; Peng, Z. Carbon-based nanoreporters designed for subsurface hydrogen sulfide detection. ACS Appl. Mater. Interfaces 2014, 6, 7652–7658. [Google Scholar] [CrossRef]
- Kim, D.H.; Suh, J.H.; Ju, J.Y.; Yum, S.K.; Shin, C.S. Analysis of sisomicin binding sites in Micromonospora inyoensis cell wall. FEMS Microbiol. Lett. 1998, 166, 9–13. [Google Scholar] [CrossRef]
- Yang, J.; Tan, Y.-Z.; Wang, Z.-H.; Shang, Y.-D.; Zhao, W.-B. Study on the coal dust surface characteristics and wetting mechanism. J. China Coal Society. 2007, 7, 737–740. [Google Scholar]
- Liu, C.; Cao, X.; Chen, C.; Hu, Y. Study on the flotation performance of dodeca-tertiary amine series trap for quartz. Min. Metall. Eng. 2009, 29, 37–39. [Google Scholar]
- Liao, M.; Huang, C.Y.; Xie, C.M. Effect of pH on the transport and morphology of cadmium in soil-water systems. J. Environ. Sci. 1999, 19, 81–86. [Google Scholar]
- Wang, X.-X.; Luo, T.; Cheng, N.; Wang, H.-H.; Huang, J.; Li, Y.-J.; Ren, H.; Liu, X.; Yu, D.-H. Study on Liquid Paraffin Pickering Emulsion Stabilized with Fluorescent Carbon Quantum Dots s and Laponite. J. Qilu Univ. Technology. 2018, 32, 18–25. [Google Scholar]
- Yang, S.L. Petrophysics; Petroleum Industry Press: Beijing, China, 2004. [Google Scholar]
- Das, R.; Rajender, G.; Giri, P.K. Anomalous fluorescence enhancement and fluorescence quenching of graphene quantum dots by single walled carbon nanotubes. Phys. Chem. Chem. Phys. 2018, 20, 4527–4537. [Google Scholar] [CrossRef]
- Luo, T.; Zhou, T.; Zhao, Y.; Liu, L.; Qu, J. Multiplexed fluorescence lifetime imaging by concentration-dependent quenching. J. Mater. Chem. B 2018, 6, 1912–1919. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Y.; Sun, K.; Reckmeier, C.J.; Zhang, T.-Q.; Zhang, X.; Zhao, J.; Wu, C.; Yu, W.W.; Rogach, A.L. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes. Nanoscale 2015, 7, 12045–12050. [Google Scholar] [CrossRef]
- Lv, J.; Yong, K.L. Identification of sudden extinction phenomenon in three-dimensional fluorescence analysis of crude oil. Anal. Lab. 1998, 17, 28–31. [Google Scholar]
- The applicability of Lambert-Beer’s law. Documenta ophthalmologica. Adv. Ophthalmol. 1974, 38, 279–282.
- Maentele, W.; Deniz, E. UV-VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochim. Acta Part A—Mol. Biomol. Spectrosc. 2017, 173, 965–968. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, F.; Qiu, P.; Wang, Z. Studies of the effect of halide ions on the fluorescence of quinine sulfate. Luminescence 2019, 34, 450–455. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Fu, Z.; Cui, F. One step synthesis of ultra-high quantum yield fluorescent carbon dots for “on-off-on” detection of Hg(2+) and biothiols. J. Fluoresc. 2022, 32, 1921–1930. [Google Scholar] [CrossRef]
- Hou, C. Detection methods for non-distributable tracer and distributable tracer concentrations. Sci. Technol. Innov. Her. 2011, 21, 116. [Google Scholar]
- Galeev, R.I.; Bolotov, A.V.; Varfolomeev, M.A.; Mukhutdinova, A.R.; Smirnov, A.E.; Kornilov, A.V.; Kruglov, D.S.; Zhirov, A.V.; Sansiev, G.V.; Fedorchenko, G.D. New and simple methods of determination partition coefficient and degree hydrolysis of tracer for estimating residual oil saturation by SWCTT technologies. Pet. Sci. Technol. 2021, 39, 1043–1059. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, R.; Wang, C.; Luo, J.; Liu, X. Synthesis of UV-curable acrylate polymer containing sulfonic groups for anti-fog coatings. Prog. Org. Coat. 2014, 77, 785–789. [Google Scholar] [CrossRef]
- Lai, Y.; Tang, Y.; Gong, J.; Gong, D.; Chi, L.; Lin, C.; Chen, Z. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. J. Mater. Chem. 2012, 22, 7420–7426. [Google Scholar] [CrossRef]
- Chen, G.; Lin, C.; Jiang, R.; Zhang, W.; Li, Q.; Li, G. Inter-well tracer interpretation model for fractured low-permeability reservoirs based on flowtube model. Logging Technol. 2018, 42, 200–204. [Google Scholar]
- Lv, P.; Liu, Y.; Zhang, Y.; Li, Y.; Xia, H. Experimental research on novel oil displacement and profile control system for heterogeneous reservoir. J. Pet. Explor. Prod. Technol. 2020, 10, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, Z.; Li, B.F. Experimental study of the effect of permeability on foam diversion. Pet. Sci. Technol. 2012, 30, 1907–1919. [Google Scholar] [CrossRef]
Reagent Name | Purity | Manufacturers |
---|---|---|
Sodium chloride (NaCl) | Analysis of pure | National Pharmaceutical Reagent |
Calcium chloride (CaCl2) | Analysis of pure | Sinopharm Reagent |
Disodium hydrogen phosphate (Na2HPO4) | Analysis of pure | National Pharmaceutical Reagent |
37% Hydrochloric acid (HCI) | Analysis of pure | National Pharmaceutical Reagent |
Citric acid anhydrous (C6H8O7) | Analysis of pure | National Pharmaceutical Reagent |
Potassium bromide (KBr) | Analysis of pure | National Pharmaceutical Reagent |
The Concentration of NaCl (%) | The Concentration of CQD-W (mg/L) | Relative Error | The Concentration of CaCl2 (mg/L) | The Concentration of CQD-W (mg/L) | Relative Error |
---|---|---|---|---|---|
Blank group | 0.10083 | 0.00% | Blank group | 0.10307 | 0.00% |
0.5 | 0.10087 | 0.04% | 50 | 0.10482 | 1.70% |
5 | 0.10206 | 1.21% | 100 | 0.10488 | 1.76% |
10 | 0.10243 | 1.58% | 500 | 0.10581 | 2.66% |
20 | 0.10190 | 1.06% | 1000 | 0.10693 | 3.75% |
pH | The Concentration of CQD-W (mg/L) | Relative Error |
---|---|---|
Blank group | 0.10785 | 0.00% |
1 | 0.10189 | 5.53% |
3 | 0.10234 | 5.11% |
5 | 0.10714 | 0.66% |
7 | 0.10416 | 3.43% |
9 | 0.10564 | 2.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Liu, J.; Dai, J.; Lin, B.; Gao, C.; Wang, C. Reservoir Adaptability Evaluation and Application Technology of Carbon Quantum Dot Fluorescent Tracer. Eng 2023, 4, 703-718. https://doi.org/10.3390/eng4010042
Chen J, Liu J, Dai J, Lin B, Gao C, Wang C. Reservoir Adaptability Evaluation and Application Technology of Carbon Quantum Dot Fluorescent Tracer. Eng. 2023; 4(1):703-718. https://doi.org/10.3390/eng4010042
Chicago/Turabian StyleChen, Jinjian, Jianxin Liu, Jijian Dai, Bo Lin, Chunyu Gao, and Ci Wang. 2023. "Reservoir Adaptability Evaluation and Application Technology of Carbon Quantum Dot Fluorescent Tracer" Eng 4, no. 1: 703-718. https://doi.org/10.3390/eng4010042
APA StyleChen, J., Liu, J., Dai, J., Lin, B., Gao, C., & Wang, C. (2023). Reservoir Adaptability Evaluation and Application Technology of Carbon Quantum Dot Fluorescent Tracer. Eng, 4(1), 703-718. https://doi.org/10.3390/eng4010042