Double Pulse LIBS Analysis of Metallic Coatings of Fusionistic Interest: Depth Profiling and Semi-Quantitative Elemental Composition by Applying the Calibration Free Technique
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- The first one is composed of mixed tungsten-nitrogen-deuterium coating, W~80%, N~14%, D~6% atomic concentration, 4.5 μm thick, (W80/N14/D6 in the following);
- (2)
- The second one is still composed of W-N-D but with a different concentration; W~70%, N~26%, D~4%, 6.5 μm thick, (W70/N26/D4 in the following);
- (3)
- The third one is composed of a mixed tungsten-tantalum-deuterium coating, W~90%, Ta~3.5%, D~4–6.5%, and a thickness of 4.5 μm, (W90/Ta3.5/D5 in the following);
- (4)
- Finally, the fourth one is composed by W-Ta-D with W~70–80%, Ta~4.5%, D~6–15%, and a thickness 2.8 μm, (W75/Ta4.5/D10 in the following).
3. Results
3.1. Depth Profiling
3.2. Calibration Free Semi-Quantitative Analysis
3.2.1. Electron Temperature
3.2.2. Electron Density
3.2.3. Plasma Optically Thin
3.2.4. Local Thermodynamic Equilibrium
3.2.5. Evaluation of the Deuterium Retained in the Coatings
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ITER. Available online: https://www.iter.org/ (accessed on 7 October 2022).
- Linke, J.; Du, J.; Loewenhoff, T.; Pintsuk, G.; Spilker, B.; Steudel, I.; Wirtz, M. Challenges for plasma-facing components in nuclear fusion. Matter Radiat. Extrem. 2019, 4, 056201. [Google Scholar] [CrossRef]
- Linsmeier, C.; Unterberg, B.; Coenen, J.; Doerner, R.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H. Material testing facilities and programs for plasma-facing component testing. Nucl. Fusion 2017, 57, 092012. [Google Scholar] [CrossRef]
- Behrisch, R.; Federici, G.; Kukushkin, A.; Reiter, D. Material erosion at the vessel walls of future fusion devices. J. Nucl. Mater. 2003, 388, 313–316. [Google Scholar] [CrossRef]
- Roth, J.; Tsitrone, E.; Loarer, T.; Philipps, V.; Brezinsek, S.; Loarte, A.; Counsell, G.F.; Doerner, R.P.; Schmid, K.; Ogorodnikova, O.V.; et al. Tritium inventory in ITER plasma-facing materials and tritium removal procedures. Plasma Phys. Control Fusion 2008, 50, 103001. [Google Scholar] [CrossRef]
- Bornschein, B.; Day, C.; Demange, D.; Pinna, T. Tritium management and safety issues in ITER and DEMO breeding blankets. Fusion Eng. Des. 2013, 88, 466–471. [Google Scholar] [CrossRef]
- Huber, A.; Schweer, B.; Philipps, V.; Gierse, N. Development of laser-based diagnostics for surface characterization of wall components in fusion devices. Fusion Eng. Des. 2011, 86, 1336–1340. [Google Scholar] [CrossRef]
- Yu, J.H.; Baldwin, M.J.; Simmonds, M.J.; Založnik, A. Time-resolved laser-induced desorption spectroscopy (LIDS) for quantified in-situ hydrogen isotope retention measurement and removal from plasma facing materials. Rev. Sci. Instr. 2019, 90, 073502. [Google Scholar] [CrossRef]
- van der Meiden, H.J.; Almaviva, S.; Butikova, J.; Dwivedi, V.; Gasior, P.J.; Gromelski, W.; Hakola, A.; Jiang, X.; Jogi, I.; Karhunen, J.; et al. Monitoring of tritium and impurities in the first wall of fusion devices using a LIBS based diagnostic. Nucl. Fusion 2021, 61, 125001. [Google Scholar] [CrossRef]
- Lyu, Y.; Li, C.; Wu, D.; He, D.; Zhao, D.; Qiao, L.; Wang, P.; Ding, H. Characterization on deuterium retention in tungsten target using spatially resolved laser induced desorption-quadrupole mass spectroscopy. Phys. Scr. 2021, 96, 124040. [Google Scholar] [CrossRef]
- Nazar, F.; Cong, L.; Hongbei, W.; Hongbin, D. Laser-induced breakdown spectroscopic characterization of tungsten plasma using the first, second, and third harmonics of an Nd:YAG laser. J. Nucl. Mater. 2012, 433, 80–85. [Google Scholar] [CrossRef]
- Almaviva, S.; Caneve, L.; Colao, F.; Lazic, V.; Maddaluno, G.; Mosetti, P.; Palucci, A.; Reale, A.; Gasior, P.; Gromelski, W.; et al. LIBS measurements inside the FTU vacuum vessel by using a robotic arm. Fusion Eng. Des. 2021, 169, 112638. [Google Scholar] [CrossRef]
- Laserna, J.; Vadillo, J.M.; Purohit, P. Laser-Induced Breakdown Spectroscopy (LIBS): Fast, Effective, and Agile Leading Edge Analytical Technology. Appl. Spectrosc. 2018, 72 (Suppl. S1), 35–50. [Google Scholar] [CrossRef]
- Mittelmann, S.; Oelmann, J.; Brezinsek, S.; Wu, D.; Ding, H.; Pretzler, G. Laser-induced ablation of tantalum in a wide range of pulse durations. Appl. Phys. A 2020, 126, 672. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Goueguel, C.R.; Jain, J.C.; McIntyre, D.L.; Singh, J.P. LIBS application to liquid samples. In Laser-Induced Breakdown Spectroscopy, 2nd ed.; Singh, J.P., Thakur, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 231–246. [Google Scholar] [CrossRef]
- Cremers, D.A.; Radziemsky, L.J. Handbook of Laser-Induced Breakdown Spectroscopy, 2nd ed.; Wiley: Chichester, UK, 2013; pp. 29–68. ISBN 978-1-118-56737-1. [Google Scholar]
- Ciucci, A.; Corsi, M.; Palleschi, V.; Ratelli, S.; Salvetti, A.; Tognoni, E. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 1999, 53, 960–964. [Google Scholar] [CrossRef]
- Almaviva, S.; Caneve, L.; Colao, F.; Maddaluno, G. Deuterium detection and quantification by laser-induced breakdown spectroscopy and calibration-free analysis in ITER relevant samples. Fusion Eng. Des. 2019, 146, 2087–2091. [Google Scholar] [CrossRef]
- Scaffidi, J.; Angel, S.M.; Cremers, D.A. Emission Enhancement Mechanisms in Dual-Pulse LIBS. Anal. Chem. 2006, 78, 24–32. [Google Scholar] [CrossRef]
- Hussain, A.; Xun, G.; Asghar, H.; Azam, M.; Ain, Q.-T.; Nawaz, Z. Enhancement of Laser-induced Breakdown Spectroscopy (LIBS) Signal Subject to the Magnetic Confinement and Dual Pulses. Opt. Spectrosc. 2021, 129, 452–459. [Google Scholar] [CrossRef]
- Alrebdi, T.A.; Fayyaz, A.; Asghar, H.; Zaman, A.; Asghar, M.; Alkallas, F.H.; Hussain, A.; Iqbal, J.; Khan, W. Quantification of Aluminum Gallium Arsenide (AlGaAs) Wafer Plasma Using Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS). Molecules 2022, 27, 3754. [Google Scholar] [CrossRef]
- Alrebdi, T.A.; Fayyaz, A.; Asghar, H.; Elaissi, S.; Abu El Maati, L. Laser Spectroscopic Characterization for the Rapid Detection of Nutrients along with CN Molecular Emission Band in Plant-Biochar. Molecules 2022, 27, 5048. [Google Scholar] [CrossRef]
- Gudmundsson, J.T.; Brenning, N.; Lundin, D.; Elmersson, U. High power impulse magnetron sputtering discharge. J. Vac. Sci. Technol. A 2012, 30, 030801. [Google Scholar] [CrossRef]
- Grigore, E.; Ruset, C.; Firdaouss, M.; Petersson, P.; Bogdanovic Radovic, I.; Siketic, Z. Helium depth profile measurements within tungsten coatings by using Glow Discharge Optical Emission Spectrometry (GDOES). Surf. Coat. Technol. 2019, 376, 21–24. [Google Scholar] [CrossRef]
- Griem, H.R.; Kolb, A.C.; Shen, K.Y. Stark Broadening of Hydrogen Lines in a Plasma. Phys. Rev. 1959, 116, 4–16. [Google Scholar] [CrossRef]
- Kramida, A. Atomic Spectral Line Broadening Bibliographic Database (version 3.0). 2022. Available online: https://physics.nist.gov/Elevbib (accessed on 24 October 2022).
- Roldán, A.M.; Dwivedi, V.; Veis, M.; Atikukke, S.; van der Meiden, H.J.; Držík, M.; Veis, P. Quantification of hydrogen isotopes by CF-LIBS in a W-based material (WZr) at atmospheric pressure: From ns towards ps. Phys. Scr. 2021, 96, 124061. [Google Scholar] [CrossRef]
- Corsi, M.; Cristoforetti, G.; Hidalgo, M.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.; Vallebona, C. Double pulse, calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils. Appl. Geochem. 2006, 21, 748–755. [Google Scholar] [CrossRef]
- Hafeez, M.; Abbasi, S.A.; Rafique, M.; Hayder, R.; Sajid, M.; Iqbal, J.; Ahmad, N.; Shahida, S. Calibration-free laser-induced breakdown spectroscopic analysis of copper-rich mineral collected from the Gilgit-Baltistan region of Pakistan. Appl. Opt. 2020, 59, 68–76. [Google Scholar] [CrossRef]
- Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Palleschi, V. From calibration-free to fundamental parameters analysis: A comparison of three recently proposed approaches. Spectrochim. Acta B 2016, 124, 40–46. [Google Scholar] [CrossRef]
- Gigosos, M.A.; Gonzalez, M.A.; Cardenoso, V. Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta B 2003, 58, 1489–1504. [Google Scholar] [CrossRef]
- Gupta, G.; Suri, B.; Verma, A.; Sundararaman, M.; Unnikrishnan, V.; Alti, K.; Kartha, V.; Santhosh, C. Quantitative elemental analysis of nickel alloys using calibration- based laser-induced-breakdown-spectroscopy. J. Alloy. Compd. 2011, 509, 3740–3745. [Google Scholar] [CrossRef]
- Fujimoto, K.; McWhirter, R.W.P. Validity criteria for local thermodynamic equilibrium in plasma spectroscopy. Phys. Rev. A 1991, 42, 6588–6601. [Google Scholar] [CrossRef]
- Almaviva, S.; Caneve, L.; Colao, F.; Maddaluno, G.; Fantoni, R. Accessory laboratory measurements to support quantification of hydrogen isotopes by in-situ LIBS from a robotic arm inside a fusion vessel. Spectrochim. Acta B 2021, 181, 106230. [Google Scholar] [CrossRef]
- Mayer, M.; Krat, S.; Baron-Wiechec, A.; Gasparyan, Y.; Heinola, K.; Koivuranta, S.; Likonen, J.; Ruset, C.; de Saint-Aubin, G.; Widdowson, A.; et al. Erosion and deposition in the JET divertor during the second ITER-like wall campaign. Phys. Scr. 2017, T170, 014058. [Google Scholar] [CrossRef] [Green Version]
Samples | Element | Wavelength in Air (nm) |
---|---|---|
All | W | 653.29 |
All | W | 653.81 |
All | D | 656.1 |
W90/Ta3.5/D5 W75/Ta4.5/D10 | Ta | 656.16 |
All | H | 656.28 |
All | W | 656.32 |
W90/Ta3.5/D5 W75/Ta4.5/D10 | Ta | 656.42 |
All | W | 657.39 |
W90/Ta3.5/D5 W75/Ta4.5/D10 | Ta | 657.48 |
Sample | Electron Density (×1016 cm−3) |
---|---|
W70/N26/D4 | 5.16 |
W80/N14/D6 | 5.27 |
W90/Ta3.5/D5 | 5.27 |
W75/Ta4.5/D10 | 4.52 |
Samples | Exp. Intensity Ratio W(653.24)/W(653.811) | Theor. Intensity Ratio W(653.24)/W(653.811) |
---|---|---|
Sample W80/N14/D6 | 0.91 | 0.953 |
Sample W70/N26/D4 | 0.88 | 0.953 |
Sample W90/Ta3.5/D5 | 0.93 | 0.953 |
Sample W75/Ta4.5/D10 | 0.86 | 0.953 |
Sample | Nominal [D/W] (%) | Exp. [D/W] (%) |
---|---|---|
W70/N26/D4 | 7.5 | 7.06 |
W80/N14/D6 | 5.7 | 7.78 |
W90/Ta3.5/D5 | 5.6 | 0.42 |
W75/Ta4.5/D10 | 13 | 8.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaviva, S.; Colao, F.; Menicucci, I.; Pistilli, M. Double Pulse LIBS Analysis of Metallic Coatings of Fusionistic Interest: Depth Profiling and Semi-Quantitative Elemental Composition by Applying the Calibration Free Technique. J. Nucl. Eng. 2023, 4, 193-203. https://doi.org/10.3390/jne4010015
Almaviva S, Colao F, Menicucci I, Pistilli M. Double Pulse LIBS Analysis of Metallic Coatings of Fusionistic Interest: Depth Profiling and Semi-Quantitative Elemental Composition by Applying the Calibration Free Technique. Journal of Nuclear Engineering. 2023; 4(1):193-203. https://doi.org/10.3390/jne4010015
Chicago/Turabian StyleAlmaviva, Salvatore, Francesco Colao, Ivano Menicucci, and Marco Pistilli. 2023. "Double Pulse LIBS Analysis of Metallic Coatings of Fusionistic Interest: Depth Profiling and Semi-Quantitative Elemental Composition by Applying the Calibration Free Technique" Journal of Nuclear Engineering 4, no. 1: 193-203. https://doi.org/10.3390/jne4010015
APA StyleAlmaviva, S., Colao, F., Menicucci, I., & Pistilli, M. (2023). Double Pulse LIBS Analysis of Metallic Coatings of Fusionistic Interest: Depth Profiling and Semi-Quantitative Elemental Composition by Applying the Calibration Free Technique. Journal of Nuclear Engineering, 4(1), 193-203. https://doi.org/10.3390/jne4010015