Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables
Abstract
:1. Introduction
2. Cruciferous Vegetables
3. The Chemistry of Glucosinolates, Isothiocyanates, and Indoles
4. Content of Isothiocyanates and Indoles in Cruciferous Vegetables
5. Extraction Procedures
5.1. Conventional Extraction
5.2. Non-Conventional Extraction
6. Methods of Analysis
6.1. Spectroscopic Techniques
6.1.1. UV–Vis Spectrophotometry
6.1.2. Fourier-Transform Infrared Spectroscopy (FT-IR)
6.2. Chromatographic Techniques
6.2.1. Paper Chromatography (PC)
6.2.2. Thin Layer Chromatography (TLC)
6.2.3. Gas Chromatography (GC)
6.2.4. High-Performance Liquid Chromatography (HPLC)
6.2.5. High Speed Counter Current Chromatography (HSCCC)
6.2.6. Supercritical Fluid Chromatography (SFC)
6.3. Hyphenated and Other Techniques
6.3.1. Liquid Chromatography/Mass Spectrometry
6.3.2. Gas Chromatography/Mass Spectrometry
6.3.3. Other Techniques
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GLS | Glucosinolates |
ITCs | Isothiocyanates |
SFN | Sulforaphane |
I3C | Indole-3-carbinol |
ITC | Isothiocyanate |
LC | Liquid Chromatography |
GC | Gas Chromatography |
LC-MS | Liquid Chromatography-Mass Spectrometry |
HRMS | High Resolution Mass Spectrometry |
ESP | Epithiospecifier protein |
TFP | Thiocyanate-forming protein |
EMP | Epithiospecifier modifier protein |
ESM1 | Epithiospecifier modifier 1 gene |
NSP | Nitrile-specifier proteins |
AcOEt | Ethyl acetate |
MTBE | Methyl t-butyl ether |
GC-FID | Gas Chromatography-Flame Ionization Detection |
GC-MS | Gas Chromatography-Mass Spectrometry |
DEAE | Diethylaminoethyl |
SPE | Solid Phase Extraction |
UAE | Ultrasound-Assisted Extraction |
HVED | High Voltage Electrical Discharges |
HPP | High-Pressure Processing |
SFE | Supercritical Fluid Extraction |
PEF | Pulsed Electric Fields |
HHP | High Hydrostatic Pressure |
SFE-CO2 | Supercritical Fluid Extraction with Carbon Dioxide |
ASE | Accelerated Solvent Extraction |
LAB | Lactic Acid Bacteria |
PDES-GO | Poly(Deep Eutectic Solvent)-Graphene Oxide |
PC | Paper Chromatography |
TLC | Thin Layer Chromatography |
HPLC | High Performance Liquid Chromatography |
HSCC | High Speed Counter Current Chromatography |
SFC | Supercritical Fluid Chromatography |
FTIR | Fourier-Transform Infrared Spectroscopy |
ATR-FTIR | Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy |
MS | Mass Spectrometry |
CE | Capillary Electrophoresis |
MAE | Microwave-Assisted Extraction |
HRGC-O/FID | High Resolution Gas Chromatography-Olfactometry/Flame Ionization Detector |
GC/EI-MS | Gas Chromatography/Electron Impact-Mass Spectrometry |
UHPLC-QqQ-MS/MS | Ultrahigh Performance Liquid Chromatography-Triple Quadruple- Mass Spectrometry/Mass Spectrometry |
UHPLC-MS | Ultra-High-Performance Liquid Chromatography-Mass Spectrometry |
NAC | N-acetyl-L-cysteine |
UPLC–HRMS/MS | Ultraperformance Liquid Chromatography-High Resolution Mass Spectrometry/Mass Spectrometry |
SPME | Solid Phase Microextraction |
PLS | Partial Least-Squares |
FLD | Fluorescence Detector |
ELSD | Evaporative Light-Scattering Detector |
HPLC-UV | High Performance Liquid Chromatography-Ultraviolet Detector |
HPLC-DAD-FLD | High Performance Liquid Chromatography-Diode-Array Detection-Fluorescence Detector |
HPLC-DAD | High Performance Liquid Chromatography-Diode-Array Detection |
HPLC-PDA-UV | High Performance Liquid Chromatography-Photodiode-Array Detection-Ultraviolet Detector |
RP-UHPLC-ESI-MS | Reverse Phase-Ultrahigh Performance Liquid Chromatography-Electronspray Ionization-Mass Spectrometry |
LC-Q-TOF-MS | Liquid Chromatography-Quadruple-Time of Flight-Mass Spectrometry |
References
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Cancer-preventive isothiocyanates: Measurement of human exposure and mechanism of action. Mutat. Res. Mol. Mech. Mutagen. 2004, 555, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Prieto, M.A.; Miatello, R.M. Organosulfur compounds and cardiovascular disease. Mol. Asp. Med. 2010, 31, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Bachiega, P.; Salgado, J.M.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Schwarz, K.; Tezotto, T.; Caldeira-Morzelle, M. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem. 2016, 190, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Mazarakis, N.; Snibson, K.; Licciardi, P.V.; Karagiannis, T.C. The potential use of l-sulforaphane for the treatment of chronic inflammatory diseases: A review of the clinical evidence. Clin. Nutr. 2020, 39, 664–675. [Google Scholar] [CrossRef]
- Briones-Herrera, A.; Eugenio-Pérez, D.; Reyes-Ocampo, J.G.; Rivera-Mancía, S.; Pedraza-Chaverri, J. New highlights on the health-improving effects of sulforaphane. Food Funct. 2018, 9, 2589–2606. [Google Scholar] [CrossRef]
- Gründemann, C.; Huber, R. Chemoprevention with isothiocyanates—from bench to bedside. Cancer Lett. 2018, 414, 26–33. [Google Scholar] [CrossRef]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional ingredients from Brassicaceae species: Overview and perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef] [Green Version]
- Chhajed, S.; Mostafa, I.; He, Y.; Abou-Hashem, M.; El-Domiaty, M.; Chen, S. Glucosinolate biosynthesis and the glucosinolate-myrosinase system in plant defense. Agronomy 2020, 10, 1786. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Kurashige, N.S. A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J. Chem. Ecol. 2003, 29, 1403–1415. [Google Scholar] [CrossRef]
- Plaszkó, T.; Szűcs, Z.; Vasas, G.; Gonda, S. Effects of glucosinolate-derived isothiocyanates on fungi: A comprehensive review on direct effects, mechanisms, structure-activity relationship data and possible agricultural applications. J. Fungi 2021, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Yuan, Q. Natural sulforaphane as a functional chemopreventive agent: Including a review of isolation, purification and analysis methods. Crit. Rev. Biotechnol. 2012, 32, 218–234. [Google Scholar] [CrossRef]
- Pinz, S.; Unser, S.; Rascle, A. The natural chemopreventive agent sulforaphane inhibits STAT5 activity. PLoS ONE 2014, 9, e99391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDanell, R.; McLean, A.; Hanley, A.; Heaney, R.; Fenwick, G. Chemical and biological properties of indole glucosinolates (glucobrassicins): A review. Food Chem. Toxicol. 1988, 26, 59–70. [Google Scholar] [CrossRef]
- Ruiz, R.B.; Hernández, P.S. Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence. Maturitas 2016, 94, 13–19. [Google Scholar] [CrossRef]
- Chinni, S.R.; Li, Y.; Upadhyay, S.; Koppolu, P.K.; Sarkar, F.H. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 2001, 20, 2927–2936. [Google Scholar] [CrossRef] [Green Version]
- Megna, B.W.; Carney, P.R.; Nukaya, M.; Geiger, P.; Kennedy, G.D. Indole-3-carbinol induces tumor cell death: Function follows form. J. Surg. Res. 2016, 204, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelosi, C.; Chiron, F.; Dubs, F.; Hedde, M.; Ponge, J.-F.; Salmon, S.; Cluzeau, D.; Nélieu, S. A new method to measure allyl isothiocyanate (AITC) concentrations in mustard—Comparison of AITC and commercial mustard solutions as earthworm extractants. Appl. Soil Ecol. 2014, 80, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ares, A.M.; Bernal, J.; Martín, M.T.; Nozal, M.J. Optimized formation, extraction, and determination of sulforaphane in broccoli by liquid chromatography with diode array detection. Food Anal. Methods 2014, 7, 730–740. [Google Scholar] [CrossRef]
- Liang, H.; Yuan, Q.; Liu, M. Simultaneous determination of glucoraphanin and sulforaphane in Brassica oleracea seeds by high-performance liquid chromatography with evaporative light-scattering detector. Nat. Prod. Res. 2013, 27, 194–197. [Google Scholar] [CrossRef]
- Fusari, C.M.; Locatelli, D.A.; Altamirano, J.; Camargo, A.B. UAE-HPLC-UV: New contribution for fast determination of total isothiocyanates in Brassicaceae vegetables. J. Chem. 2015, 2015, e294601. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.A.; Ennahar, S.; Marchioni, E.; Bergaentzlé, M.; Bindler, F. Improvement in determination of isothiocyanates using high-temperature reversed-phase HPLC. J. Sep. Sci. 2012, 35, 2026–2031. [Google Scholar] [CrossRef] [PubMed]
- Ciska, E.; Drabińska, N.; Narwojsz, A.; Honke, J. Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage. Food Chem. 2016, 203, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, N.; Nishizaki, Y.; Nakajima, K.; Sugimoto, N.; Sato, K. Determination of allyl isothiocyanate in mustard and horseradish extracts by single reference GC and HPLC based on relative molar sensitivities. J. Food Hyg. Soc. Jpn. 2021, 62, 73–78. [Google Scholar] [CrossRef]
- Tang, L.; Paonessa, J.D.; Zhang, Y.; Ambrosone, C.B.; McCann, S.E. Total isothiocyanate yield from raw cruciferous vegetables commonly consumed in the United States. J. Funct. Foods 2013, 5, 1996–2001. [Google Scholar] [CrossRef] [Green Version]
- Latxague, L.; Gardrat, C.; Coustille, J.; Viaud, M.; Rollin, P. Identification of enzymatic degradation products from synthesized glucobrassicin by gas chromatography-mass spectrometry. J. Chromatogr. A 1991, 586, 166–170. [Google Scholar] [CrossRef]
- Tolonen, M.; Taipale, M.; Viander, B.; Pihlava, J.-M.; Korhonen, H.; Ryhänen, E.-L. Plant-derived biomolecules in fermented cabbage. J. Agric. Food Chem. 2002, 50, 6798–6803. [Google Scholar] [CrossRef]
- Farag, M.A.; Motaal, A.A.A. Sulforaphane composition, cytotoxic and antioxidant activity of crucifer vegetables. J. Adv. Res. 2010, 1, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.-K.; Kim, J.-R.; Ahn, Y.-J.; Shibamoto, T. Analysis and anti-helicobacter activity of sulforaphane and related compounds present in broccoli (Brassica oleracea L.) sprouts. J. Agric. Food Chem. 2010, 58, 6672–6677. [Google Scholar] [CrossRef]
- Klopsch, R.; Witzel, K.; Börner, A.; Schreiner, M.; Hanschen, F. Metabolic profiling of glucosinolates and their hydrolysis products in a germplasm collection of Brassica rapa turnips. Food Res. Int. 2017, 100, 392–403. [Google Scholar] [CrossRef]
- Chiang, W.C.K.; Pusateri, A.D.J.; Leitz, R.E.A. Gas chromatography/mass spectrometry method for the determination of sulforaphane and sulforaphane nitrile in broccoli. J. Agric. Food Chem. 1998, 46, 1018–1021. [Google Scholar] [CrossRef]
- Chen, C.-W.; Rosen, R.T.; Ho, C.-T. Analysis of thermal degradation products of allyl isothiocyanate and phenethyl isothiocyanate. In Flavor Analysis; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1998; Volume 705, pp. 152–166. ISBN 978-0-8412-3578-6. [Google Scholar]
- Song, L.; Iori, R.; Thornalley, P.J. Purification of major glucosinolates from Brassicaceae seeds and preparation of isothiocyanate and amine metabolites. J. Sci. Food Agric. 2006, 86, 1271–1280. [Google Scholar] [CrossRef]
- Franco, P.; Spinozzi, S.; Pagnotta, E.; Lazzeri, L.; Ugolini, L.; Camborata, C.; Roda, A. Development of a liquid chromatography–electrospray ionization-tandem mass spectrometry method for the simultaneous analysis of intact glucosinolates and isothiocyanates in Brassicaceae seeds and functional foods. J. Chromatogr. A 2016, 1428, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, T.; Verkerk, R.; Vermeulen, M.; Dekker, M. In Vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions. Mol. Nutr. Food Res. 2014, 58, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Ares, A.M.; Valverde, S.; Bernal, J.L.; Nozal, M.J. Development and validation of a LC–MS/MS method to determine sulforaphane in honey. Food Chem. 2015, 181, 263–269. [Google Scholar] [CrossRef]
- Al Janobi, A.A.; Mithen, R.; Gasper, A.V.; Shaw, N.; Middleton, R.J.; Ortori, C.A.; Barrett, D.A. Quantitative measurement of sulforaphane, iberin and their mercapturic acid pathway metabolites in human plasma and urine using liquid chromatography-tandem electrospray ionisation mass spectrometry. J. Chromatogr. B 2006, 844, 223–234. [Google Scholar] [CrossRef]
- Dominguez-Perles, R.; Medina, S.; Moreno-Fernández, D.Á.; Garcia-Viguera, C.; Ferreres, F.; Gil-Izquierdo, Á. A new ultra-rapid UHPLC/MS/MS method for assessing glucoraphanin and sulforaphane bioavailability in human urine. Food Chem. 2014, 143, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Hauder, J.; Winkler, S.; Bub, A.; Rüfer, C.E.; Pignitter, M.; Somoza, V. LC-MS/MS quantification of sulforaphane and indole-3-carbinol metabolites in human plasma and urine after dietary intake of selenium-fortified broccoli. J. Agric. Food Chem. 2011, 59, 8047–8057. [Google Scholar] [CrossRef]
- Zheng, L.; Zheng, F. Development and validation of an LC-APCI-MS/MS method for the determination of phenethyl isothiocyanate in human plasma. Biomed. Chromatogr. 2014, 29, 619–625. [Google Scholar] [CrossRef]
- Platz, S.; Piberger, A.L.; Budnowski, J.; Herz, C.; Schreiner, M.; Blaut, M.; Hartwig, A.; Lamy, E.; Hanske, L.; Rohn, S. Bioavailability and biotransformation of sulforaphane and erucin metabolites in different biological matrices determined by LC–MS–MS. Anal. Bioanal. Chem. 2015, 407, 1819–1829. [Google Scholar] [CrossRef]
- Kokotou, M.G.; Revelou, P.-K.; Pappas, C.; Constantinou-Kokotou, V. High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli. Food Chem. 2017, 237, 566–573. [Google Scholar] [CrossRef]
- Revelou, P.-K.; Kokotou, M.G.; Constantinou-Kokotou, V. Determination of indole-type phytonutrients in cruciferous vegetables. Nat. Prod. Res. 2018, 34, 2554–2557. [Google Scholar] [CrossRef]
- Zhang, Y.; Cho, C.-G.; Posner, G.H.; Talalay, P. Spectroscopic quantitation of organic isothiocyanates by cyclocondensation with vicinal dithiols. Anal. Biochem. 1992, 205, 100–107. [Google Scholar] [CrossRef]
- Revelou, P.; Kokotou, M.; Pappas, C.; Constantinou-Kokotou, V. Direct determination of total isothiocyanate content in broccoli using attenuated total reflectance infrared Fourier transform spectroscopy. J. Food Compos. Anal. 2017, 61, 47–51. [Google Scholar] [CrossRef]
- Thornalley, P. Cruciferous Vegetables, Isothiocyanates and Indoles; IARC: Lyon, France, 2004; pp. 1–250. [Google Scholar]
- Šamec, D.; Salopek-Sondi, B. Chapter 3.11—Cruciferous (Brassicaceae) vegetables. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: Cambridge, UK, 2019; pp. 195–202. ISBN 978-0-12-812491-8. [Google Scholar]
- Liu, B.; Mao, Q.; Cao, M.; Xie, L. Cruciferous vegetables intake and risk of prostate cancer: A meta-analysis. Int. J. Urol. 2011, 19, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lv, K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: A meta-analysis. Breast 2013, 22, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mao, Q.; Lin, Y.; Zhou, F.; Xie, L. The association of cruciferous vegetables intake and risk of bladder cancer: A meta-analysis. World J. Urol. 2012, 31, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-J.; Yang, Y.; Wang, J.; Han, L.-H.; Xiang, Y.-B. Cruciferous vegetable consumption and gastric cancer risk: A meta-analysis of epidemiological studies. Cancer Sci. 2013, 104, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mao, Q.; Wang, X.; Zhou, F.; Luo, J.; Wang, C.; Lin, Y.; Zheng, X.; Xie, L. Cruciferous vegetables consumption and risk of renal cell carcinoma: A meta-analysis. Nutr. Cancer 2013, 65, 668–676. [Google Scholar] [CrossRef]
- Murillo, G.; Mehta, R.G. Cruciferous vegetables and cancer prevention. Nutr. Cancer 2001, 41, 17–28. [Google Scholar] [CrossRef]
- Jahangir, M.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Health-affecting compounds in Brassicaceae. Compr. Rev. Food Sci. Food Saf. 2009, 8, 31–43. [Google Scholar] [CrossRef]
- Šamec, D.; Pavlović, I.; Salopek-Sondi, B. White cabbage (Brassica oleracea var. capitata f. alba): Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2017, 16, 117–135. [Google Scholar] [CrossRef]
- Han, B.; Li, X.; Yu, T. Cruciferous vegetables consumption and the risk of ovarian cancer: A meta-analysis of observational studies. Diagn. Pathol. 2014, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latté, K.P.; Appel, K.-E.; Lampen, A. Health benefits and possible risks of broccoli—an overview. Food Chem. Toxicol. 2011, 49, 3287–3309. [Google Scholar] [CrossRef]
- Vig, A.P.; Rampal, G.; Thind, T.S.; Arora, S. Bio-protective effects of glucosinolates—a review. LWT 2009, 42, 1561–1572. [Google Scholar] [CrossRef]
- Mérillon, J.-M.; Ramawat, K.G. Reference Series in Phytochemistry; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-25461-6. [Google Scholar]
- Kushad, M.M.; Brown, A.F.; Kurilich, A.C.; Juvik, J.A.; Klein, B.P.; Wallig, M.A.; Jeffery, E. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agric. Food Chem. 1999, 47, 1541–1548. [Google Scholar] [CrossRef]
- Pedras, M.S.C.; Yaya, E.E. Phytoalexins from Brassicaceae: News from the front. Phytochemistry 2010, 71, 1191–1197. [Google Scholar] [CrossRef]
- Slovin, J.P.; Bandurski, R.S.; Cohen, J.D. Chapter 5—Auxin. In New Comprehensive Biochemistry; Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; Volume 33, pp. 115–140. ISBN 0167-7306. [Google Scholar]
- Kala, C.; Khan, N.A. Isolation and characterization of isopropyl isothiocyanate isolated from seeds of Drypetes roxburghii wall and its anti-platelet and anti-thrombotic activity. Sci. Afr. 2020, 10, e00658. [Google Scholar] [CrossRef]
- Johnson, S.D.; Griffiths, M.E.; Peter, C.I.; Lawes, M.J. Pollinators, “mustard oil” volatiles, and fruit production in flowers of the dioecious tree Drypetes natalensis (Putranjivaceae). Am. J. Bot. 2009, 96, 2080–2086. [Google Scholar] [CrossRef] [Green Version]
- Møller, B.L. Functional diversifications of cyanogenic glucosides. Curr. Opin. Plant Biol. 2010, 13, 337–346. [Google Scholar] [CrossRef]
- Bennett, R.N.; Kiddle, G.; Wallsgrove, R.M. Biosynthesis of benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica papaya. Phytochemistry 1997, 45, 59–66. [Google Scholar] [CrossRef]
- Rask, L.; Andréasson, E.; Ekbom, B.; Eriksson, S.; Pontoppidan, B.; Meijer, J. Myrosinase: Gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 2000, 42, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Uda, Y.; Kurata, T.; Arakawa, N. Effects of pH and ferrous ion on the degradation of glucosinolates by myrosinase. Agric. Biol. Chem. 1986, 50, 2735–2740. [Google Scholar] [CrossRef]
- Lambrix, V.; Reichelt, M.; Mitchell-Olds, T.; Kliebenstein, D.J.; Gershenzon, J. The arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences trichoplusia ni herbivory. Plant Cell 2001, 13, 2793–2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliviero, T.; Verkerk, R.; Dekker, M. Isothiocyanates from Brassica vegetables-effects of processing, cooking, mastication, and digestion. Mol. Nutr. Food Res. 2018, 62, e1701069. [Google Scholar] [CrossRef] [Green Version]
- Wittstock, U.; Burow, M. Tipping the scales—Specifier proteins in glucosinolate hydrolysis. IUBMB Life 2007, 59, 744–751. [Google Scholar] [CrossRef]
- Hasapis, X.; MacLeod, A.J. Benzylglucosinolate degradation in heat-treated Lepidium sativum seeds and detection of a thiocyanate-forming factor. Phytochemistry 1982, 21, 1009–1013. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, B.W.; Schroeder, F.; Jander, G. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J. 2008, 54, 1015–1026. [Google Scholar] [CrossRef]
- Burow, M.; Zhang, Z.-Y.; Ober, J.A.; Lambrix, V.M.; Wittstock, U.; Gershenzon, J.; Kliebenstein, D.J. ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in arabidopsis. Phytochemistry 2008, 69, 663–671. [Google Scholar] [CrossRef]
- Agerbirk, N.; Olsen, C.E.; Sørensen, H. Initial and final products, nitriles, and ascorbigens produced in myrosinase-catalyzed hydrolysis of indole glucosinolates. J. Agric. Food Chem. 1998, 46, 1563–1571. [Google Scholar] [CrossRef]
- Liang, H.; Yuan, Q.; Dong, H.; Liu, Y. Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography. J. Food Compos. Anal. 2006, 19, 473–476. [Google Scholar] [CrossRef]
- Villatoro-Pulido, M.; Priego-Capote, F.; Álvarez-Sánchez, B.; Saha, S.; Philo, M.; Obregón-Cano, S.; De Haro-Bailón, A.; Font, R.; Del Río-Celestino, M. An approach to the phytochemical profiling of rocket [Eruca sativa (Mill.) Thell]. J. Sci. Food Agric. 2013, 93, 3809–3819. [Google Scholar] [CrossRef] [PubMed]
- Sangthong, S.; Weerapreeyakul, N. Simultaneous quantification of sulforaphene and sulforaphane by reverse phase HPLC and their content in Raphanus sativus L. var. caudatus Alef extracts. Food Chem. 2016, 201, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Shen, L.; Qiu, S.; Wang, X.; Wang, K.; Hao, J.; Xu, M. Analysis of the isothiocyanates present in three Chinese Brassica vegetable seeds and their potential anticancer bioactivities. Eur. Food Res. Technol. 2010, 231, 951–958. [Google Scholar] [CrossRef]
- Lv, C.; Zhang, Y.; Zou, L.; Sun, J.; Song, X.; Mao, J.; Wu, Y. Simultaneous hydrolysis and extraction increased erucin yield from broccoli seeds. ACS Omega 2021, 6, 6385–6392. [Google Scholar] [CrossRef] [PubMed]
- Sosińska, E.; Obiedziński, M.W. Effect of processing on the content of glucobrassicin and its degradation products in broccoli and cauliflower. Food Control. 2011, 22, 1348–1356. [Google Scholar] [CrossRef]
- Vieites-Outes, C.; López-Hernández, J.; Lage-Yusty, M.A. Modification of glucosinolates in turnip greens (Brassica rapa subsp. rapa L.) subjected to culinary heat processes. CyTA J. Food 2016, 14, 536–540. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.; Silva, I.; Poejo, J.; Serra, A.T.; Matias, A.A.; Simplício, A.L.; Bronze, M.; Duarte, C.M.M. Recovery of antioxidant and antiproliferative compounds from watercress using pressurized fluid extraction. RSC Adv. 2016, 6, 30905–30918. [Google Scholar] [CrossRef]
- Devys, M.; Barbier, M. Indole-3-carboxaldehyde in the cabbage Brassica oleracea: A systematic determination. Phytochemistry 1991, 30, 389–391. [Google Scholar] [CrossRef]
- Vallejo, F.; Garcia-Viguera, C.; Tomas-Barberan, F. Changes in broccoli (Brassica oleracea L. Var. italica) health-promoting compounds with inflorescence development. J. Agric. Food Chem. 2003, 51, 3776–3782. [Google Scholar] [CrossRef]
- Kupke, F.; Herz, C.; Hanschen, F.S.; Platz, S.; Odongo, G.A.; Helmig, S.; Rodríguez, M.M.B.; Schreiner, M.; Rohn, S.; Lamy, E. Cytotoxic and genotoxic potential of food-borne nitriles in a liver In Vitro model. Sci. Rep. 2016, 6, 37631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapusta-Duch, J.; Kusznierewicz, B.; Leszczyńska, T.; Borczak, B. Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables. J. Funct. Foods 2016, 23, 412–422. [Google Scholar] [CrossRef]
- Eib, S.; Schneider, D.J.; Hensel, O.; Seuß-Baum, I. Relationship between mustard pungency and allyl-isothiocyanate content: A comparison of sensory and chemical evaluations. J. Food Sci. 2020, 85, 2728–2736. [Google Scholar] [CrossRef]
- Baenas, N.; Marhuenda, J.; García-Viguera, C.; Zafrilla, P.; Moreno, D.A. Influence of cooking methods on glucosinolates and isothiocyanates content in novel cruciferous foods. Foods 2019, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Fusari, C.M.; Ramirez, D.A.; Camargo, A.B. Simplified analytical methodology for glucosinolate hydrolysis products: A miniaturized extraction technique and multivariate optimization. Anal. Methods 2018, 11, 309–316. [Google Scholar] [CrossRef]
- Matthäus, B.; Fiebig, H.-J. Simultaneous determination of isothiocyanates, indoles, and oxazolidinethiones in myrosinase digests of rapeseeds and rapeseed meal by HPLC. J. Agric. Food Chem. 1996, 44, 3894–3899. [Google Scholar] [CrossRef]
- Li, Z.; Wei, X.; Liu, Y.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H. Development of a simple method for determination of anti-cancer component of indole-3-carbinol in cabbage and broccoli. J. Food Nutr. Res. 2017, 5, 642–648. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Row, K.H. Separation and purification of sulforaphane from broccoli by solid phase extraction. Int. J. Mol. Sci. 2011, 12, 1854–1861. [Google Scholar] [CrossRef] [Green Version]
- Andini, S.; Araya-Cloutier, C.; Sanders, M.; Vincken, J.-P. Simultaneous analysis of glucosinolates and isothiocyanates by reversed-phase ultra-high-performance liquid chromatography-electron spray ionization-tandem mass spectrometry. J. Agric. Food Chem. 2020, 68, 3121–3131. [Google Scholar] [CrossRef] [Green Version]
- Campas-Baypoli, O.N.; Sánchez-Machado, D.I.; Bueno-Solano, C.; Ramírez-Wong, B.; López-Cervantes, J. HPLC method validation for measurement of sulforaphane level in broccoli by-products. Biomed. Chromatogr. 2009, 24, 387–392. [Google Scholar] [CrossRef]
- Ciska, E.; Honke, J. Effect of the pasteurization process on the contents of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3′-diindolylmethane in fermented cabbage. J. Agric. Food Chem. 2012, 60, 3645–3649. [Google Scholar] [CrossRef]
- González, F.; Quintero, J.; Del Río, R.; Mahn, A. Optimization of an extraction process to obtain a food-grade sulforaphane-rich extract from broccoli (Brassica oleracea var. italica). Molecules 2021, 26, 4042. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Li, C.; Yuan, Q.; Vriesekoop, F. Separation and purification of sulforaphane from broccoli seeds by solid phase extraction and preparative high-performance liquid chromatography. J. Agric. Food Chem. 2007, 55, 8047–8053. [Google Scholar] [CrossRef]
- Ciska, E.; Honke, J.; Drabińska, N. Changes in glucosinolates and their breakdown products during the fermentation of cabbage and prolonged storage of sauerkraut: Focus on sauerkraut juice. Food Chem. 2021, 365, 130498. [Google Scholar] [CrossRef]
- Li, J.; Xie, B.; Yan, S.; Li, H.; Wang, Q. Extraction and determination of 4-methylthio-3-butenyl isothiocyanate in Chinese radish (Raphanus sativus L.) roots. LWT 2015, 60, 1080–1087. [Google Scholar] [CrossRef]
- Han, Z.; Li, H.; Yu, X.-C.; Sun, D.-W. Effects of low temperature cooking on the retention of 4-(methylthio)-3-butenyl isothiocyanate (MTBITC) of Chinese white radish (Raphanus sativus L.). Food Bioprocess Technol. 2016, 9, 1640–1647. [Google Scholar] [CrossRef]
- Wang, J.; Yu, H.; Zhao, Z.; Sheng, X.; Shen, Y.; Gu, H. Natural variation of glucosinolates and their breakdown products in broccoli (Brassica oleracea var. italica) Seeds. J. Agric. Food Chem. 2019, 67, 12528–12537. [Google Scholar] [CrossRef]
- Kroener, E.-M.; Buettner, A. Sensory-analytical comparison of the aroma of different horseradish varieties (Armoracia rusticana). Front. Chem. 2018, 6, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Rai, P.; Prasad, S. GC–MS detection and determination of major volatile compounds in Brassica juncea L. leaves and seeds. Microchem. J. 2018, 138, 488–493. [Google Scholar] [CrossRef]
- Klopsch, R.; Witzel, K.; Artemyeva, A.; Ruppel, S.; Hanschen, F.S. Genotypic variation of glucosinolates and their breakdown products in leaves of Brassica rapa. J. Agric. Food Chem. 2018, 66, 5481–5490. [Google Scholar] [CrossRef]
- Zeng, W.; Tao, H.; Li, Y.; Wang, J.; Xia, C.; Li, S.; Wang, M.; Wang, Q.; Miao, H. The flavor of Chinese kale sprouts is affected by genotypic variation of glucosinolates and their breakdown products. Food Chem. 2021, 359, 129824. [Google Scholar] [CrossRef]
- Marchioni, I.; Martinelli, M.; Ascrizzi, R.; Gabbrielli, C.; Flamini, G.; Pistelli, L.; Pistelli, L. Small functional foods: Comparative phytochemical and nutritional analyses of five microgreens of the Brassicaceae family. Foods 2021, 10, 427. [Google Scholar] [CrossRef]
- Blažević, I.; Mastelić, J. Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chem. 2009, 113, 96–102. [Google Scholar] [CrossRef]
- Daryaei, H.; Yousef, A.E.; Balasubramaniam, V.M. Microbiological aspects of high-pressure processing of food: Inactivation of microbial vegetative cells and spores. In High Pressure Processing of Food: Principles, Technology and Applications; Balasubramaniam, V.M., Barbosa-Cánovas, G.V., Lelieveld, H.L.M., Eds.; Springer: New York, NY, USA, 2016; pp. 271–294. ISBN 978-1-4939-3234-4. [Google Scholar]
- Ke, Y.-Y.; Shyu, Y.-T.; Wu, S.-J. Evaluating the anti-inflammatory and antioxidant effects of broccoli treated with high hydrostatic pressure in cell models. Foods 2021, 10, 167. [Google Scholar] [CrossRef] [PubMed]
- Westphal, A.; Riedl, K.; Cooperstone, J.L.; Kamat, S.; Balasubramaniam, V.M.; Schwartz, S.J.; Böhm, V. High-pressure processing of broccoli sprouts: Influence on bioactivation of glucosinolates to isothiocyanates. J. Agric. Food Chem. 2017, 65, 8578–8585. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.Y.; Cha, K.H.; Song, D.-G.; Chung, D.; Lee, D.-U.; Pan, C.-H. Amplification of allyl isothiocyanate in red cabbage using high hydrostatic pressure treatment. J. Med. Plants Res. 2011, 5, 3819–3822. [Google Scholar] [CrossRef]
- Amofa-Diatuo, T.; Anang, D.M.; Barba, F.J.; Tiwari, B.K. Development of new apple beverages rich in isothiocyanates by using extracts obtained from ultrasound-treated cauliflower by-products: Evaluation of physical properties and consumer acceptance. J. Food Compos. Anal. 2017, 61, 73–81. [Google Scholar] [CrossRef]
- Barba, F.J.; Boussetta, N.; Vorobiev, E. Emerging technologies for the recovery of isothiocyanates, protein and phenolic compounds from rapeseed and rapeseed press-cake: Effect of high voltage electrical discharges. Innov. Food Sci. Emerg. Technol. 2015, 31, 67–72. [Google Scholar] [CrossRef]
- Tanongkankit, Y.; Sablani, S.S.; Chiewchan, N.; Devahastin, S. Microwave-assisted extraction of sulforaphane from white cabbages: Effects of extraction condition, solvent and sample pretreatment. J. Food Eng. 2013, 117, 151–157. [Google Scholar] [CrossRef]
- Li, L.; Lee, W.; Lee, W.J.; Auh, J.H.; Kim, S.S.; Yoon, J. Extraction of allyl isothiocyanate from wasabi (Wasabia japonica Matsum) using supercritical carbon dioxide. Food Sci. Biotechnol. 2010, 19, 405–410. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, G.-A.; Zeng, S.; Lin, K.-C. Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy. Pest Manag. Sci. 2009, 65, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Rafińska, K.; Pomastowski, P.; Rudnicka, J.; Krakowska, A.; Maruśka, A.; Narkute, M.; Buszewski, B. Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chem. 2019, 289, 16–25. [Google Scholar] [CrossRef]
- Boussetta, N.; Lesaint, O.; Vorobiev, E. A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innov. Food Sci. Emerg. Technol. 2013, 19, 124–132. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Xi, J. Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chem. 2019, 277, 246–260. [Google Scholar] [CrossRef]
- Tabasso, S.; Carnaroglio, D.; Gaudino, E.C.; Cravotto, G. Microwave, ultrasound and ball mill procedures for bio-waste valorisation. Green Chem. 2014, 17, 684–693. [Google Scholar] [CrossRef]
- Bosiljkov, T.; Dujmić, F.; Bubalo, M.C.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Redovniković, I.R.; Jokić, S. Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. Food Bioprod. Process. 2017, 102, 195–203. [Google Scholar] [CrossRef]
- Bagade, S.B.; Patil, M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, B. Bio-based chemicals from biorefining: Lipid and wax conversion and utilization. In Advances in Biorefineries; Waldron, K., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 693–720. [Google Scholar]
- Jaiswal, A.K.; Abu-Ghannam, N. Fermentation-assisted extraction of isothiocyanates from Brassica vegetable using box-behnken experimental design. Foods 2016, 5, 75. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chen, H.; Han, Y.; Qiao, F.; Yan, H. Analysis of anticancer compound, indole-3-carbinol, in broccoli using a new ultrasound-assisted dispersive-filter extraction method based on poly (deep eutectic solvent)-graphene oxide nanocomposite. J. Pharm. Anal 2021, in press. [Google Scholar] [CrossRef]
- Coscueta, E.; Reis, C.; Pintado, M. Phenylethyl isothiocyanate extracted from watercress by-products with aqueous micellar systems: Development and optimisation. Antioxidants 2020, 9, 698. [Google Scholar] [CrossRef]
- Passos, M.L.C.; Sarraguça, M.C.; Saraiva, M.L.M.F.S.; Prasada Rao, T.; Biju, V.M. Spectrophotometry|organic compounds. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 350–359. ISBN 9780081019849. [Google Scholar]
- Zhang, Y. The 1,2-benzenedithiole-based cyclocondensation assay: A valuable tool for the measurement of chemopreventive isothiocyanates. Crit. Rev. Food Sci. Nutr. 2012, 52, 525–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, D.; Yu, M.C.; Hankin, J.H.; Low, S.-H.; Chung, F.-L. Total isothiocyanate contents in cooked vegetables frequently consumed in Singapore. J. Agric. Food Chem. 1998, 46, 1055–1058. [Google Scholar] [CrossRef]
- Sun, J.; Chen, P. Quantification of total glucosinolates and isothiocyanates for common Brassicaceous vegetables consumed in the US market using cyclocondensation and thiocyanate ion measurement methods. J. Anal. Test. 2019, 3, 313–321. [Google Scholar] [CrossRef]
- Choi, M.M.; Shuang, S.; Lai, H.; Cheng, S.; Cheng, R.C.; Cheung, B.K.; Lee, A.W. Gas chromatography-mass spectrometric determination of total isothiocyanates in Chinese medicinal herbs. Anal. Chim. Acta 2004, 516, 155–163. [Google Scholar] [CrossRef]
- Mirabella, F.M. Internal Reflection Spectroscopy: Theory and Applications; Mirabella, F.M., Ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-1-00-306694-1. [Google Scholar]
- Clapp, R.C.; Long, L.; Dateo, G.P.; Bissett, F.H.; Hasselstrom, T. The volatile isothiocyanates in fresh cabbage1. J. Am. Chem. Soc. 1959, 81, 6278–6281. [Google Scholar] [CrossRef]
- Daxenbichler, M.E.; VanEtten, C.H.; Brown, F.S.; Jones, Q. Seed meal constituents, oxazolidinethiones and volatile isothiocyanates in enzyme-treated seed meals from 65 species of Cruciferae. J. Agric. Food Chem. 1964, 12, 127–130. [Google Scholar] [CrossRef]
- Kjaer, A.; Rubinstein, K. Paper chromatography of thioureas. Nat. Cell Biol. 1953, 171, 840–841. [Google Scholar] [CrossRef]
- Kore, A.M.; Spencer, G.F.; Wallig, M.A. Purification of the.omega.-(methylsulfinyl) alkyl glucosinolate hydrolysis products: 1-isothiocyanato-3-(methylsulfinyl) propane, 1-isothiocyanato-4-(methylsulfinyl) butane, 4-(methylsulfinyl) butanenitrile, and 5-(methylsulfinyl) pentanenitrile from broccoli and Lesquerella fendleri. J. Agric. Food Chem. 1993, 41, 89–95. [Google Scholar] [CrossRef]
- Guo, R.; Yuan, G.; Wang, Q. Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Sci. Hortic. 2011, 128, 159–165. [Google Scholar] [CrossRef]
- Guo, R.-F.; Yuan, G.-F.; Wang, Q.-M. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J. Zhejiang Univ. Sci. B 2013, 14, 124–131. [Google Scholar] [CrossRef]
- Matusheski, N.; Wallig, M.A.; Juvik, J.A.; Klein, B.P.; Kushad, M.M.; Jeffery, E. Preparative HPLC method for the purification of sulforaphane and sulforaphane nitrile from Brassica oleracea. J. Agric. Food Chem. 2001, 49, 1867–1872. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, M.; Rosen, R.T.; Ho, C.-T. Thermal degradation of sulforaphane in aqueous solution. J. Agric. Food Chem. 1999, 47, 3121–3123. [Google Scholar] [CrossRef]
- Chen, C.-W.; Ho, C.-T. Thermal degradation of allyl isothiocyanate in aqueous solution. J. Agric. Food Chem. 1998, 46, 220–223. [Google Scholar] [CrossRef]
- Pilipczuk, T.; Dawidowska, N.; Kusznierewicz, B.; Namiesnik, J.; Bartoszek, A. Simultaneous determination of indolic compounds in plant extracts by solid-phase extraction and high-performance liquid chromatography with UV and fluorescence detection. Food Anal. Methods 2015, 8, 2169–2177. [Google Scholar] [CrossRef]
- Nakagawa, K.; Umeda, T.; Higuchi, O.; Tsuduki, T.; Miyazawa, T. Evaporative light-scattering analysis of sulforaphane in broccoli samples: Quality of broccoli products regarding sulforaphane contents. J. Agric. Food Chem. 2006, 54, 2479–2483. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Q.; Li, P.; Yang, H. High-speed countercurrent chromatography-based method for simultaneous recovery and separation of natural products from deep eutectic solvent extracts. ACS Sustain. Chem. Eng. 2020, 8, 2073–2080. [Google Scholar] [CrossRef]
- Khan, B.M.; Liu, Y. High speed counter current chromatography: Overview of solvent-system and elution-mode. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 629–636. [Google Scholar] [CrossRef]
- Liang, H.; Li, C.; Yuan, Q.; Vriesekoop, F. Application of high-speed countercurrent chromatography for the isolation of sulforaphane from broccoli seed meal. J. Agric. Food Chem. 2008, 56, 7746–7749. [Google Scholar] [CrossRef] [PubMed]
- Kuang, P.; Song, D.; Yuan, Q.; Lv, X.; Zhao, D.; Liang, H. Preparative separation and purification of sulforaphene from radish seeds by high-speed countercurrent chromatography. Food Chem. 2013, 136, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Chew, S.C.; Yang, L. Chromatography: Supercritical fluid chromatography. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 407–415. ISBN 978-0-12-384953-3. [Google Scholar]
- Buskov, S.; Hansen, L.B.; Olsen, C.E.; Sørensen, J.C.; Sørensen, H.; Sørensen, S. Determination of ascorbigens in autolysates of various Brassica species using supercritical fluid chromatography. J. Agric. Food Chem. 2000, 48, 2693–2701. [Google Scholar] [CrossRef] [PubMed]
- Buskov, S.; Hasselstrøm, J.; Olsen, C.E.; Sørensen, H.; Sørensen, J.C.; Sørensen, S. Supercritical fluid chromatography as a method of analysis for the determination of 4-hydroxybenzylglucosinolate degradation products. J. Biochem. Biophys. Methods 2000, 43, 157–174. [Google Scholar] [CrossRef]
- Van Eylen, D.; Bellostas, N.; Strobel, B.W.; Oey, I.; Hendrickx, M.E.; Van Loey, A.; Sørensen, H.; Sørensen, J. Influence of pressure/temperature treatments on glucosinolate conversion in broccoli (Brassica oleraceae L. cv italica) heads. Food Chem. 2009, 112, 646–653. [Google Scholar] [CrossRef]
- Pilipczuk, T.; Kusznierewicz, B.; Chmiel, T.; Przychodzeń, W.; Bartoszek, A. Simultaneous determination of individual isothiocyanates in plant samples by HPLC-DAD-MS following SPE and derivatization with N -acetyl- l -cysteine. Food Chem. 2017, 214, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Ghawi, S.K.; Methven, L.; Niranjan, K. The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chem. 2013, 138, 1734–1741. [Google Scholar] [CrossRef]
- Shen, L.; Su, G.; Wang, X.; Du, Q.; Wang, K. Endogenous and exogenous enzymolysis of vegetable-sourced glucosinolates and influencing factors. Food Chem. 2009, 119, 987–994. [Google Scholar] [CrossRef]
- Naser, S.A.; Amiri-Besheli, B.; Sharifi-Mehr, S. The isolation and determination of sulforaphane from broccoli tissues by reverse phase-high performance liquid chromatography. J. Chin. Chem. Soc. 2011, 58, 906–910. [Google Scholar] [CrossRef]
- Raffo, A.; Masci, M.; Moneta, E.; Nicoli, S.; del Pulgar, J.S.; Paoletti, F. Characterization of volatiles and identification of odor-active compounds of rocket leaves. Food Chem. 2018, 240, 1161–1170. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Jeleń, H.H. Volatile compounds of selected raw and cooked Brassica vegetables. Molecules 2019, 24, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, M.N.; Majcher, M.; Jeleń, H. Comparison of three extraction techniques for the determination of volatile flavor components in broccoli. Foods 2020, 9, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, M.N.; Majcher, M.A.; Jeleń, H.H. Identification of aroma compounds in raw and cooked broccoli. Flavour Fragr. J. 2021, 36, 576–583. [Google Scholar] [CrossRef]
- Wei, S.; Xiao, X.; Wei, L.; Li, L.; Li, G.; Liu, F.; Xie, J.; Yu, J.; Zhong, Y. Development and comprehensive HS-SPME/GC–MS analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. var. capitata L.) volatile components. Food Chem. 2021, 340, 128166. [Google Scholar] [CrossRef] [PubMed]
- Gonda, S.; Kiss-Szikszai, A.; Szűcs, Z.; Nguyen, N.M.; Vasas, G. Myrosinase compatible simultaneous determination of glucosinolates and allyl isothiocyanate by capillary electrophoresis micellar electrokinetic chromatography (CE-MEKC). Phytochem. Anal. 2016, 27, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Common Name | Genus | Species and Cultivar |
---|---|---|
Cauliflower | Brassica | B. oleracea (L.) var. botrytis |
Cabbage | B. oleracea (L.) var. capitata | |
Brussels sprouts | B. oleracea (L.) var. gemmifera | |
Broccoli | B. oleracea (L.) var. italica | |
Savoy cabbage | B. oleracea (L.) var. sabauda | |
Kale | B. oleracea (L.)var. acephala | |
Bok choy | B. rapa var. (L.) chinensis | |
Turnip | B. rapa (L.) var. rapa | |
White mustard | B. alba (L.) Rabenh. | |
Indian mustard | B. juncea (L.) Czernj | |
Radish | Raphanus | R. raphanistrum subsp. Sativus (L.) Domin |
Horseradish | Armoracia | A.rusticana (L.) |
Watercress | Nasturtium | Ν.officinale W.T.Aiton |
Garden cress | Lepidium | L.sativum (L.) |
Rocket | Εruca | E. sativa Mill. |
Wasabi | Wasabia | W.japonica (L.) |
Glucosinolate | Products | Structure | Vegetable | Content | References |
---|---|---|---|---|---|
Glucoraphanin | Sulforaphane | Broccoli | 0.14–370.3 mg/100 g FW 1 | [31,76] | |
White cabbage | 540 μg/g FW | [28] | |||
Red cabbage | 48 μg/g FW | ||||
Turnip | 60 μg/g FW | ||||
Cauliflower | 2–190 μmol/100 g FW | [46] | |||
Arugula | 5.90 μmol/g DW 2 | [77] | |||
Radish | 111.94 μg/g FW | [78] | |||
Glucoiberin | Iberin | Broccoli | 2.40 mg/g DW | [79] | |
White cabbage | 5–280 μmol/100 g FW | [46] | |||
Cauliflower | 0–330 μmol/100 g FW | ||||
Arugula | 1.55 μmol/g DW | [77] | |||
Glucoreucin | Erucin | Broccoli seeds | 0.38–1.08 mg/g | [80] | |
Glucobrassicin | Indole-3-carbinol | Broccoli | 24.6 μmol/100 g DW | [81] | |
White cabbage | 0.116 μmol/100 g FW | [23] | |||
Cauliflower | 39.5 μmol/100 g DW | [81] | |||
Sinigrin | Allyl-ITC | Broccoli | 7.54 mg/g DW | [79] | |
White cabbage | 4–160 μmol/100 g FW | [46] | |||
Turnip | 5 mg/100 g FW | [82] | |||
Arugula | 1–160 μmol/100 g FW | [46] | |||
Gluconasturtiin | Phenethyl-ITC | Broccoli | 1.93 mg/g DW | [79] | |
Turnip | 8 mg/100 g FW | [82] | |||
Watercress | 14–29.3 μmol/g DW | [83] | |||
Glucobrassicin | Ascorbigen | Broccoli | 236 μmol/100 g DW | [81] | |
White cabbage | 0.081 μmol/100 g FW | [23] | |||
Cauliflower | 929 μmol/100 g DW | [81] | |||
Glucobrassicin | Indole-3-carboxaldehyde | White cabbage | 1.88 mg/100 g FW | [84] | |
Cauliflower | 10 μg/100 g FW | ||||
Glucobrassicin | 3,3′-Diindolylmethane | Broccoli | 3.1 μmol/100 g DW | [81] | |
White cabbage | 0.00235 μmol/100 g FW | [23] | |||
Cauliflower | 3.1 μmol/100 g DW | [81] |
Analyte | Vegetable | Sample Preparation | Extraction Solvent | Purification | Analytical Method | Conditions | Reference |
---|---|---|---|---|---|---|---|
Sulforaphane | Broccoli | Fresh or lyophilized sample, addition of acidic water (pH 6), incubation at 45 ± 2 °C for 2.5 h | CH2Cl2 | Filtration with Whatman no. 41 paper, purification with Bakerbond SPE silica gel 3 mL, | HPLC-UV 1 | Wavelength: 202 nm Column: SS Exil ODS C18/25 × 0.46 cm, 5 μm Mobile phase: MeCN and H2O | [95] |
Ascorbigen indole-3-carbinol, indole-3-acetonitrile, 3,3′-diindolylmethane | Fermented cabbage | Sample homogenized with distilled water and NaCl | Acetone- ethyl acetate (for ascorbigen), Methyl-t-butyl ether (for indole-3-carbinol), CH2Cl2 (for indole-3- acetonitrile, 3,3′-diindolylmethane) | filtration | HPLC-UV/fluorescence | (for ascorbigen) Wavelength: 280 nm Column: RP-18 Mobile phase: 10% MeCN in 0.1 M NH4OAc buffer pH 5.7 and 80% MeCN in 0.1 M NH4OAc buffer pH 5.7. (for the other indoles) Fluorescence detection: ex.285 nm, em.340 nm Column: RP-18 Mobile phase: 10% MeCN and 80% MeCN | [96] |
Sulforaphane | Broccoli | Addition of acidic water (pH 3), incubation at 35 °C for 4 h (optimum conditions) | CH2Cl2 | Filtration with 0.22 µm membrane filter and purification with silica SPE cartridge | HPLC-UV | Wavelength: 205 nm Column: OptimaPak C18/250 mm × 4.6 mm, 5 μm Mobile phase: MeCN and H2O | [93] |
Total ITCs | Broccoli Cabbage Cauliflower Brussels sprout Kale Collard green Mustard green Turnip green | Homogenization with deionized water and centrifuge, supernatant mixed with 100 mmol/L potassium phosphate buffer pH 8.5 and 10 mmol/L 1,2-benzenedithiol in MeOH for cyclocondensation reaction | - | Centrifuge at low speed | HPLC | Wavelength: 365 nm Column: Whatman Partisil ODS-2 RP-C18/250 mm × 4.5 mm, 10μm Mobile phase: MeOH and H2O | [25] |
Sulforaphane | Broccoli florets, stems, and leaves | Dried sample at 40 °C, addition of acidic water pH 5.0 or 6.0 using 0.1 M hydrochloric acid, incubation at 35–45 °C for 1–4 h | Methyl-t-butyl ether | Filtration with Albet 140 paper and purification with SPE with silica cartridges | HPLC-DAD 2 | Wavelength: 196 nm Column: SynergiTM Hydro-RP C18/150 mm × 4.6 mm, 4 μm Mobile phase: 20 mM NH4HCO2 in H2O and MeCN (55:45, v/v) | [19] |
Sulforaphane, sulforaphene | Raphanus sativus L. var. caudatus Alef | Homogenization with deionized water for 30 min and autolyze at r.t. for 2 h. | CH2Cl2 | - | HPLC-DAD | Wavelength: 254 nm Column: HiQsil RP-C18/250 mm × 4.6 mm, 5 μm Mobile phase: THF and H2O | [78] |
Total ITCs | Fresh and cooked green cauliflower, purple cauliflower, rutabaga | Lyophilized samples mixed with 0.01 M sodium phosphate buffer pH 7.4, incubation at 37 °C for 3 h, centrifuge and purification by SPE. Retained ITCs submitted to a cyclocondensation reaction | - | Supernatant passed through Bakerbond SPE C18 500 mg cartridge. Elution of ITCs and indoles with MeOH | HPLC-DAD | Wavelength: 365 nm Zorbax Eclipse XDB-C8/150 mm × 4.6 mm, 3.5 μm Mobile phase: 1% (v/v) formic acid in H2O and MeOH | [87] |
Indole-3-carbinol Indole-3-acetic acid Indole-3-acetonitrile Diindolylmethane Total indoles | Lyophilized samples mixed with 0.01 M sodium phosphate buffer pH 7.4, incubation at 37 °C for 3 h and centrifuge | - | HPLC-DAD-FLD 3 | Fluorescence detection: ex.280 nm, em.360 nm Column: Zorbax Eclipse XDB-C8/150 mm × 4.6 mm, 3.5 μm Mobile phase: MeCN and H2O | |||
Indole-3-carbinol | Broccoli, cabbage | Freeze-dried samples homogenized with sodium dihydrogen phosphate and citric acid buffer for 1.5 h | Ethyl acetate | Centrifuge for 10 min at 5500× g and filtration with Agela No. 0.22-μm (D) nylon filter paper | HPLC-UV | Wavelength: 279 nm Column: C18/250 × 4.6 mm, 5 µm Mobile phase: H2O and MeCN | [92] |
Alyll-ITC | Mustard | Samples homogenized with LC-grade water and ACN at 450 rpm for 10 min and sonicated for 30 min | - | Centrifuge for 10 min at 1300× g at 7 °C and filtration with Phenomenex RC 0.45 µm membrane filter | HPLC-PDA-UV 4 | Wavelength: 242 nm Column: ReproSil-Pur 120 C18-AQ/250 × 4.6 mm, 5 µm Mobile phase: H2O with 0.5% formic acid and MeCN with 0.5% formic acid | [88] |
Sulforaphane | Broccoli | Fresh sample homogenized | CH2Cl2 | Filtration | HPLC-DAD | Wavelength: 254 nm Column: Agilent C18/250 × 4.6 mm, 5 µm Mobile phase: H2O and MeCN | [97] |
Ascorbigen, indole-3-carbinol, indole-3-acetonitrile, 3,3′-diindolylmethane | Fermented cabbage | Sample homogenized with water | Acetone (for ascorbigen), Methyl-t-butyl ether (for indole-3-carbinol), CH2Cl2 (for indole-3- acetonitrile, 3,3′-diindolylmethane) | Filtration with PTFE filter 0.22 µm (for ascorbigen, indole-3-acetonitrile, 3,3′-diindolylmethane), filtration with filter paper Munktell, grade: 390 (for indole-3-carbinol) | HPLC-UV | (for ascorbigen) Wavelength: 280 nm Column: LiChrospher® 100 RP-18/250 × 4 mm, 5 µm Mobile phase: 10% MeCN in 0.1 M NH4OAc buffer pH 5.7 and 80% MeCN in 0.1 M NH4OAc buffer pH 5.7. (for the other indoles) Fluorescence detection: ex.285 nm, em.340 nm Column: LiChrospher® 100 RP-18/250 × 4 mm, 5 µm Mobile phase: 10% MeCN and 80% MeCN | [99] |
Sulforaphane, iberin | Broccolini, kale | Freeze-dried samples extracted with MilliQ-H2O for 24 h at room temperature | H2O | Centrifuge for 5 min at 17,500× g | UHPLC-QqQ-MS/MS5 | Column: ZORBAX Eclipse Plus C18/50 × 2.1 mm, 1.8 μm Mobile phase: H2O/ammonium acetate 13 mM (pH 4) with acetic acid 99.99:0.01 v/v and acetonitrile/acetic acid; 99.99:0.1, v/v | [89] |
3-(methylsulfinyl)propyl-ITC, 4-(methylsulfinyl)butyl-ITC, 6-(methylsulfinyl)hexyl-ITC, 9-(methylsulfinyl)nonyl-ITC, 4-(methylsulfinyl)-3- Butenyl-ITC, 3-(methylsulfonyl)propyl-ITC, 3-(methylthio)propyl-ITC, 4-(methylthio)butyl-ITC, 5-(methylthio)pentyl-ITC, propyl-ITC, allyl-ITC, 3-butenyl-ITC, 4-pentenyl-ITC, benzyl-ITC, phenethyl-ITC | Seeds of Sinapis alba (yellow mustard) Brassica napus Brassica juncea var. rugosa rugosa (Chinese mustard) | Extraction of GLS with MeOH at 65 °C. Extract evaporated, resolubilized in tert-butanol and freeze-dried. Addition of myrosinase and derivatization with N-acetyl-L-cysteine | - | - | RP-UHPLC–ESI-MS6 | Column: Acquity UPLC-BEH shield RP18/150 mm × 2.1 mm, 1.7 μm Mobile phase: 0.1% (v/v) FA in H2O and 0.1% (v/v) FA in MeCN | [94] |
Sulforaphane, indole-3-carbinol | Broccoli | Fresh samples homogenized for 5 min, addition of distilled water, incubation at 45 ± 3 °C for 3 h | CH2Cl2 | Filtration with Whatman filter paper grade 1 | UPLC–HRMS/MS 7 | Column: Merck Chromolith RP/100 × 4.6 mm Mobile phase: MeOH and H2O | [42] |
Indole-3-carbinol, indole-3-carboxaldehyde, ascorbigen, indole-3-acetic acid | White cauliflower, red cabbage, white cabbage, green broccoli, purple broccoli, radish, turnip | Lyophilized samples mixed with distilled water, incubation at 45 ± 3 °C for 3 h | CH2Cl2 | Filtration with Whatman filter paper grade 1 | LC-Q-TOF-MS 8 | Column: Agilent Zorbax C18/50 × 2.1 mm, 1.8 μm Mobile phase: MeOH and H2O | [43] |
Analyte | Vegetable | Sample Preparation | Extraction Solvent | Purification | Analytical Method | Conditions | Reference |
---|---|---|---|---|---|---|---|
4-methylthio-3-butenyl-ITC | Chinese radish roots | Samples cut into 1 cm cubic pieces, blended and ground. Filtration with two layers of cotton gauze. Centrifuge of the filtrate with CH2Cl2 at 3× g for 1.5 h at 37 °C | CH2Cl2 | Centrifuge for 15 min at 756× g Filtration with 0.45 μm membrane filter | GC-FID 1 | Column: HP-5/30 m × 0.32 mm × 0.5 μm, splitless mode, T injector = 250 °C T detector = 280 °C | [100] |
4-methylthio-3-butenyl-ITC | Chinese white radish | Cooked samples were homogenized and filtered through two layers of cotton gauze. Ultrasonic extraction for 10 min | CH2Cl2 | Centrifuge for 10 min at 3000 rpm | GC-FID | Column: HP-5/30 m × 0.25 mm × 0.25 μm, splitless mode, T injector = 200 °C T detector = 200 °C | [101] |
2-propenyl-ITC, 3-(methylthio)propyl-ITC, propyl ITC, 3-butenyl-ITC, 3-butenenitrile, 4-pentenenitrile, 4-(methylsulfinyl)butyl-ITC, 5-(methylsulfinyl)-pentanenitrile, 3,4-epithiobutanenitrile | Broccoli seeds | Seeds suspended in water and ground in a mortar. Washed with water and incubated at 25 °C for 2 h. | CH2Cl2 | Centrifuge | GC-FID | Column: HP5/30 m × 0.25 mm × 0.25 μm, splitless mode, T injector = 200 °C | [102] |
sec-butyl-ITC, allyl-ITC, benzyl-ITC 3-(methylthio)propyl-ITC, 2-phenylethyl-ITC | Horseradish roots | Samples were peeled and ground. Addition of CH2Cl2 and vigorous stirring for 30 min. | CH2Cl2 | Filtration and solvent-assisted flavor evaporation at 50 °C | HRGC-O/FID 2 | Column: DB-FFAP/30 mm × 0.32 mm × 0.25µm or DB5/30 m × 0.32 mm × 0.25µm, split ratio (1:1), T injection = 40 °C (cold on-column technique) | [103] |
4-(methylthio)butyl-ITC, 2-phenylethyl-ITC, 4-(methylthio)-3-butenyl-ITC, 4-methylpentyl-ITC, benzyl-ITC, 5-(methylthio)-4-pentenenitrile, benzenepropanenitrile | Radish | Clevenger hydrodistillation | H2O | - | GC-FID and GC-MS 3 | For GC-FID: Column: HP-101/25 m × 0.2 mm × 0.2 μm split ratio 1:50 T injector = 250 °C T detector = 300 °C For GC-MS: Column: HP-20 M/50 m × 0.2 mm × 0.2 μm, split ratio 1:50, T injector = 250 °C | [108] |
2-butyl-ITC, phenylethyl-ITC | Indian mustard | Dried and defatted seeds and leaves mixed with deionized water and incubated at 37 °C for 2 h. Addition of myrosinase and L-ascorbic acid. Incubation for 3 h at 37 °C. | CH2Cl2 | Centrifuge for 15 min at 4000 rpm. | GC-MS | Column: HP-5 m/0.25 mm × 30 m × 0.25 μm, split ratio 1:50, T injector = 280 °C | [104] |
sec-butyl-ITC, 3-butenyl-ITC, 4-pentenyl-ITC, 4-(methylsulfanyl)butyl-ITC, 5-(methylsulfanyl)pentyl-ITC, 4-(methylsulfinyl)butyl-ITC, 2-phenylethyl-ITC, 1-methoxyindole-3-carbinol, 3-methylpentanenitrile, 4-pentenenitrile, 3-hydroxypentenenitrile, 5-hexenenitrile, 5-(methylsulfanyl)pentanenitrile, 6-(methylsulfanyl)hexanenitrile, 5-(methylsulfinyl)-pentanenitrile, 3-phenylpropanenitrile, indole-3-acetonitrile, 1-methoxyindole-3-acetonitrile, 4,5-epithiopentanenitrile, 3-hydroxy-4,5-epithiopentanenitrile, 5,6-epithiohexanenitrile, 3-hydroxy-5,6-epithiohexanenitrile, 5-vinyl-1,3-oxazolidine-2-thione | Brassica rapa leaves | Fresh samples homogenized with deionized water | CH2Cl2 | Centrifuge | GC-MS | Column: SGE BP5MS/30 m × 0.25 mm × 0.25 μm, splitless mode, T injector = 190 °C | [105] |
3-butenyl nitrile, 4-pentenenitrile, 2-propenyl-ITC, 3-butenyl-ITC, 3,4-epithiobutyl nitrile, 4-(methylsulfanyl)butenyl nitrile, 4,5-epithio-pentanenitrile, 5-(methylsulfanyl)-pentanenitrile, 3-(methylsulfanyl)propyl-ITC, 4-(methylsulfanyl)-butyl-ITC, 2-phenylethyl-ITC, 5-vinyl-1,3-oxazolidine-2-thione, 3-hydroxy-4,5-epithiopentane-nitrile, 5-(methylsulfinyl)pentanenitrile, 3-(methylsulphinyl)propyl-ITC, 4-(methylsulfinyl)-butyl-ITC | Chinese kale sprouts | Samples homogenized with ddH2O and incubated at 25 ℃ for 1 h | CH2Cl2 | Centrifuge for 10 min at 4000 g at room temperature | GC-MS | HP-5ms/30 m × 0.25 mm × 0.25-μm, splitless injection, T injector = 250 °C | [106] |
allyl-ITC, 2-butyl ITC, 3-butenyl-ITC, 4-pentenyl-ITC, 4-methylpentyl-ITC, hexyl-ITC, heptyl ITC, benzyl-ITC, erucin, phenethyl-ITC | Βroccoli, daikon, mustard, rocket salad, watercress | Clevenger hydrodistillation | H2O | - | GC/EI-MS 4 | Column: HP-5MS/30 m × 0.25 mm × 0.25 μm, T injector = 220 °C | [107] |
Vegetable | Compounds Studied | Technology | References |
---|---|---|---|
Red cabbage | Allyl-ITC | HHP 1 | [112] |
Broccoli | Sulforaphane, erucin | HHP | [110] |
Broccoli sprouts | Iberin, sulforaphane, erucin | HP 2 | [111] |
Cauliflower by-products | Isothiocyanates | UAE 3 | [113] |
Rapeseed, rapeseed press-cake | Isothiocyanates | HVED 4 | [114] |
White cabbage | Sulforaphane | MAE 5 | [115] |
Wasabi | Allyl-ITC | SFE-CO2 6 | [116] |
Horseradish | Allyl-ITC | SFE-CO2/Hydrodistillation/H2O | [117] |
Watercress | Isothiocyanates | PFE 7 | [83] |
Garden cress | Benzyl-ITC | UAE/SFE-CO2/ASE 8 | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karanikolopoulou, S.; Revelou, P.-K.; Xagoraris, M.; Kokotou, M.G.; Constantinou-Kokotou, V. Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables. Analytica 2021, 2, 93-120. https://doi.org/10.3390/analytica2040011
Karanikolopoulou S, Revelou P-K, Xagoraris M, Kokotou MG, Constantinou-Kokotou V. Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables. Analytica. 2021; 2(4):93-120. https://doi.org/10.3390/analytica2040011
Chicago/Turabian StyleKaranikolopoulou, Sofia, Panagiota-Kyriaki Revelou, Marinos Xagoraris, Maroula G. Kokotou, and Violetta Constantinou-Kokotou. 2021. "Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables" Analytica 2, no. 4: 93-120. https://doi.org/10.3390/analytica2040011
APA StyleKaranikolopoulou, S., Revelou, P. -K., Xagoraris, M., Kokotou, M. G., & Constantinou-Kokotou, V. (2021). Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables. Analytica, 2(4), 93-120. https://doi.org/10.3390/analytica2040011