UIS Characterization of LOCOS-Based LDMOS Transistor Fabricated by 1 µm CMOS Process †
Abstract
:1. Introduction
2. Device and UIS Set-Up
3. Results & Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theeuwen, S.; Mollee, H.; Heeres, R.; van Rijs, F. LDMOS technology for power amplifiers up to 12 GHz. In Proceedings of the 2018 13th European Microwave Integrated Circuits Conference (EuMIC), Madrid, Spain, 23–25 September 2018; pp. 162–165. [Google Scholar]
- Mehrotra, S.; Radic, L.; Grote, B.; Saxena, T.; Qin, G.; Khemka, V.; Thomas, T.; Gibson, M. Towards ultimate scaling of LDMOS with Ultralow Specific On-resistance. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020; pp. 42–45. [Google Scholar]
- Pjenčák, J.; Agam, M.; Šeliga, L.; Yao, T.; Suwhanov, A. Novel approach for NLDMOS performance enhancement by critical electric field engineering. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; pp. 307–310. [Google Scholar]
- Kumar, B.S.; Paul, M.; Shrivastava, M.; Gossner, H. Performance and reliability insights of drain extended FinFET devices for high voltage SoC applications. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; pp. 72–75. [Google Scholar]
- Vigneau, M.; Ercoli, M.; Maroldt, S. Fully integrated three-way LDMOS Doherty PAs for 1.8–2.2 GHz dual-band and 2.6 GHz m-MIMO 5G applications. Int. J. Microw. Wirel. Technol. 2021, 1–18. [Google Scholar] [CrossRef]
- Houadef; Djezzar, B. Process and performance optimization of Triple-RESURF LDMOS with Trenched-Gate. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22755. [Google Scholar] [CrossRef]
- Erlbacher, T. Lateral Power Transistors in Integrated Circuits; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Fu, Y.; Li, Z.; Ng, W.T.; Sin, J.K. Integrated Power Devices and TCAD Simulation; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Moens, P.; van den Bosch, G. Characterization of total safe operating area of lateral DMOS transistors. IEEE Trans. Device Mater. Reliab. 2006, 6, 349–357. [Google Scholar] [CrossRef]
- Vashchenko, V.A.; Shibkov, A. ESD Design for Analog Circuits; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Bayram, Y.; Volakis, J.L.; Myoung, S.K.; Doo, S.J.; Roblin, P. High-power EMI on RF amplifier and digital modulation schemes. IEEE Trans. Electromagn. Compat. 2008, 50, 849–860. [Google Scholar] [CrossRef]
- Ridley, B. Specific negative resistance in solids. Proc. Phys. Soc. (1958–1967) 1963, 82, 954. [Google Scholar] [CrossRef]
- Hower, P.L.; Pendharkar, S. Short and long-term safe operating area considerations in LDMOS transistors. In Proceedings of the 2005 43rd Annual IEEE International Reliability Physics Symposium, San Jose, CA, USA, 17–21 April 2005; pp. 545–550. [Google Scholar]
- Volkov, A.F.; Kogan, S.M. Physical phenomena in semiconductors with negative differential conductivity. Sov. Phys. Uspekhi 1969, 11, 881. [Google Scholar] [CrossRef]
- Denison, M.; Blaho, M.; Rodin, P.; Dubec, V.; Pogany, D.; Silber, D. Moving current filaments in integrated DMOS transistors under short-duration current stress. IEEE Trans. Electron Devices 2004, 51, 1331–1339. [Google Scholar] [CrossRef]
- Smith, B.; Xu, J.; Devore, J.; Chellamuthu, A.; Amey, B.; Pendharkar, S.; Efland, T. Peripheral motor drive PIC concerns for integrated LDMOS technologies. In Proceedings of the 2004 16th International Symposium on Power Semiconductor Devices and ICs, Kitakyushu, Japan, 24–27 May 2004; pp. 159–162. [Google Scholar]
- El-Kareh, B.; Hutter, L.N. Silicon Analog Components; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Houadef, A.; Djezzar, B. HCI Degradation of LOCOS-based LDMOS Transistor fabricated by 1 μm CMOS Process. In Proceedings of the 2020 International Conference on Electrical Engineering (ICEE), Istanbul, Turkey, 25–27 September 2020; pp. 1–6. [Google Scholar]
- Houadef, A.; Djezzar, B. Evaluation of Hot Carrier Impact on Lateral-DMOS with LOCOS feature. Alger. J. Signals Syst. 2021, 6, 16–23. [Google Scholar]
- Houadef, A.; Djezzar, B. Hot Carrier Degradation in Triple-RESURF LDMOS with Trenched-Gate. In Proceedings of the 2021 IEEE 32nd International Conference on Microelectronics (MIEL), Nis, Serbia, 12–14 September 2021; pp. 141–144. [Google Scholar]
- Tyaginov, S.; Grasser, T. Modeling of hot-carrier degradation: Physics and controversial issues. In Proceedings of the 2012 IEEE International Integrated Reliability Workshop Final Report, South Lake Tahoe, CA, USA, 14–18 October 2012; pp. 206–215. [Google Scholar]
- SentaurusTM Process User Guide. Mountain View, CA. September 2017. Available online: https://www.synopsys.com (accessed on 15 September 2021).
- Djezzar, B.; Bellaroussi, M.T. Process and Device Simulation of 1.2 μm- Channel N- well C-MOS Technology. In Proceedings of the 5th International Conference on Microelectronics (ICM’93), Dhahran, Saudi Arabia, 14–16 December 1993; pp. 28–32. [Google Scholar]
- Boubaaya, M.; HadjLarbi, F.; Oussalah, S. Simulation of Ion Implantation for CMOS 1 μm Using SILVACO Tools. In Proceedings of the 24th International Conference on Microelectronics (ICM’12), Algiers, Algeria, 16–20 December 2012; pp. 1–3. [Google Scholar]
- Modeling the Unclamped Inductive Switching Capabilities of Silicon Power Devices Using TCAD Sentaurus. Mountain View, CA. 2017. Available online: https://www.synopsys.com (accessed on 15 September 2021).
- Williams, T. The Circuit Designer’s Companion; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Nidhia, K.; Agarwala, N.; Yanga, S.; Purwadia, X.; Sheua, G.; Tsaib, J. Failure analysis of power mosfets based on multifinger configuration under unclamped inductive switching (uis) stress condition. In Proceedings of the SISPAD 2012, Denver, CO, USA, 5–7 September 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houadef, A.; Djezzar, B. UIS Characterization of LOCOS-Based LDMOS Transistor Fabricated by 1 µm CMOS Process. Eng. Proc. 2022, 14, 16. https://doi.org/10.3390/engproc2022014016
Houadef A, Djezzar B. UIS Characterization of LOCOS-Based LDMOS Transistor Fabricated by 1 µm CMOS Process. Engineering Proceedings. 2022; 14(1):16. https://doi.org/10.3390/engproc2022014016
Chicago/Turabian StyleHouadef, Ali, and Boualem Djezzar. 2022. "UIS Characterization of LOCOS-Based LDMOS Transistor Fabricated by 1 µm CMOS Process" Engineering Proceedings 14, no. 1: 16. https://doi.org/10.3390/engproc2022014016
APA StyleHouadef, A., & Djezzar, B. (2022). UIS Characterization of LOCOS-Based LDMOS Transistor Fabricated by 1 µm CMOS Process. Engineering Proceedings, 14(1), 16. https://doi.org/10.3390/engproc2022014016