A Deep Learning-Based Approach to Failure Detection in Mooring (Thin) Lines from Marine Images †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Dataset
2.2. Image Augmentation
2.3. Architecture of the Inception v3 Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, K.T.; Luo, Y.; Kwan, C.T.; Wu, Y. Mooring System Engineering for Offshore Structures; Gulf Professional Publishing: Houston, TX, USA, 2019. [Google Scholar]
- Jaffari, R.; Hashmani, M.A.; Taib, H.; Abdullah, N.; Rizvi, S.S. A Novel Image-Based Framework for Process Monitoring and Fault Diagnosis of Mooring Lines. J. Hunan Univ. Nat. Sci. 2020, 47, 101–114. [Google Scholar]
- Lugsdin, A. Real-time monitoring of FPSO mooring lines, risers. Sea Technol. 2012, 53, 21–24. [Google Scholar]
- Whyte, A.; Nishanth, R.; Kurian, V. Floating production storage and offloading systems’ cost and motion performance: A systems thinking application. Front. Eng. Manag. 2018, 5, 357–368. [Google Scholar]
- Li, P.; Jin, C.; Ma, G.; Yang, J.; Sun, L. Evaluation of dynamic tensions of single point mooring system under random waves with artificial neural network. J. Mar. Sci. Eng. 2022, 10, 666. [Google Scholar] [CrossRef]
- Speight, J.G.; Jauhari, P. Subsea and Deepwater Oil and Gas Science and Technology; Gulf Professional: Dallas, TX, USA, 2012. [Google Scholar]
- Ma, G.; Jin, C.; Wang, H.; Li, P.; Kang, H.S. Study on dynamic tension estimation for the underwater soft yoke mooring system with LSTM-AM neural network. Ocean Eng. 2023, 267, 113287. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, T.; Liao, S. Predicting future mooring line tension of floating structure by machine learning. Ocean Eng. 2023, 269, 113470. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, T.; Duan, M. A DNN-based approach to predict dynamic mooring tensions for semi-submersible platform under a mooring line failure condition. Ocean Eng. 2022, 266, 112767. [Google Scholar] [CrossRef]
- Sun, Q.; Li, W.; Li, R.; Peng, D.; Guo, Q.; Zhao, Y.; Yue, Q.; Zhong, W. Anchor Chain Optimization Design of a Catenary Anchor Leg Mooring System Based on Adaptive Sampling. J. Mar. Sci. Eng. 2022, 10, 1739. [Google Scholar] [CrossRef]
- Chen, H.; Bu, Y.; Zong, K.; Huang, L.; Hao, W. The Effect of Data Skewness on the LSTM-Based Mooring Load Prediction Model. J. Mar. Sci. Eng. 2022, 10, 1931. [Google Scholar] [CrossRef]
- Qiao, D.; Li, P.; Ma, G.; Qi, X.; Yan, J.; Ning, D.; Li, B. Realtime prediction of dynamic mooring lines responses with LSTM neural network model. Ocean Eng. 2021, 219, 108368. [Google Scholar] [CrossRef]
- Jayasinghe, K.M.; Thomas, C.V.; Kilner, A.A.; Eassom, A.C.; Gumley, J.M. From Model to Reality: Practical Insights from Mooring Integrity Monitoring Using Vessel Position Data. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2022. [Google Scholar]
- Kwon, D.S.; Jin, C.; Kim, M.; Koo, W. Mooring-failure monitoring of submerged floating tunnel using deep neural network. Appl. Sci. 2020, 10, 6591. [Google Scholar] [CrossRef]
- Lee, K.; Chung, M.; Kim, S. Damage detection of catenary mooring line based on recurrent neural networks. Ocean Eng. 2021, 227, 108898. [Google Scholar] [CrossRef]
- Orcina. OrcaFlex-World-Leading Package for the Dynamic Analysis of Offshore Marine System. 2022. Available online: https://www.orcina.com/orcaflex/ (accessed on 15 January 2023).
- Xu, M.; Yoon, S.; Fuentes, A.; Park, D.S. A comprehensive survey of image augmentation techniques for deep learning. Pattern Recognit. 2023, 137, 109347. [Google Scholar] [CrossRef]
- QoChuk, B. Inception V3 Model Architecture. 2023. Available online: https://iq.opengenus.org/inception-v3-model-architecture/ (accessed on 19 July 2023).
- Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 2018, 77, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Aljuaid, A.; Almohaya, M.; Anwar, M. An Early Detection of Oral Epithelial Dysplasia Based on GoogLeNet Inception-v3. In Proceedings of the 2022 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Arlington, VA, USA, 17–19 November 2022. [Google Scholar]
Model | Detection | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | F1 Score (%) |
---|---|---|---|---|---|---|
Inception v3 | Mooring Lines | 87.33 | 93.27 | 73.91 | 88.99 | 91.09 |
Model | Test Cases | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | F1 Score (%) |
---|---|---|---|---|---|---|
Inception v3 | (a) | 82.67 | 90 | 68 | 84.91 | 87.34 |
(b) | 67.33 | 79.12 | 49.15 | 70.59 | 74.64 | |
(c) | 72.67 | 78.26 | 63.79 | 77.42 | 77.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatri, T.K.; Hashmani, M.A.; Taib, H.; Abdullah, N.; Rahim, L.A. A Deep Learning-Based Approach to Failure Detection in Mooring (Thin) Lines from Marine Images. Eng. Proc. 2023, 56, 121. https://doi.org/10.3390/ASEC2023-15926
Khatri TK, Hashmani MA, Taib H, Abdullah N, Rahim LA. A Deep Learning-Based Approach to Failure Detection in Mooring (Thin) Lines from Marine Images. Engineering Proceedings. 2023; 56(1):121. https://doi.org/10.3390/ASEC2023-15926
Chicago/Turabian StyleKhatri, Tarwan Kumar, Manzoor Ahmed Hashmani, Hasmi Taib, Nasir Abdullah, and Lukman Ab. Rahim. 2023. "A Deep Learning-Based Approach to Failure Detection in Mooring (Thin) Lines from Marine Images" Engineering Proceedings 56, no. 1: 121. https://doi.org/10.3390/ASEC2023-15926
APA StyleKhatri, T. K., Hashmani, M. A., Taib, H., Abdullah, N., & Rahim, L. A. (2023). A Deep Learning-Based Approach to Failure Detection in Mooring (Thin) Lines from Marine Images. Engineering Proceedings, 56(1), 121. https://doi.org/10.3390/ASEC2023-15926