Online Near-Infrared Spectroscopy for the Measurement of Cow Milk Quality in an Automatic Milking System †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Near-Infrared Spectroscopy
2.2. Holstein Cows and Milk Samples
2.3. Reference Analysis
2.4. Chemometric Analysis
3. Results and Discussion
3.1. Near-Infrared Spectra
3.2. Calibration Model’s Precision and Accuracy (Measurement Results at Every 20 s)
3.3. Milk Analysis at One Milking Time
3.4. Dairy Precision Farming
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopez-Villalobos, N.; Jayawardana, J.M.D.R.; McNaughton, L.R.; Hickson, R.E. A review of once-a-day milking in dairy cow grazing systems. JDS Commun. 2023, 4, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Svennersten-Sjaunja, H.; Sjaunja, K.; Bertilsson, L.-O.; Wiktorsson, J. Use of regular milking recorded versus daily records for nutrition and other kinds of management. Livest Prod. Sci. 1997, 48, 167–174. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Iweka, P.; Kawamura, S.; Mitani, T.; Yamaguchi, T.; Koseki, S. Near-infrared Spectroscopic Sensing System for Online Real-time Milk Quality Evaluation in an Automatic Milking System. In Proceedings of the 7th Asian NIR Symposium (ANS 2020), Khonkaen, Thailand, 12–15 February 2020. [Google Scholar]
- Iweka, P.; Kawamura, S.; Mitani, T.; Yokoe, M.; Okatani, T. Effect of Milking Season on the Accuracy of Calibration Models for Milk Quality Determination using Near-infrared Spectroscopic Sensing System during Milking. In Proceedings of the 5th Asian NIR Symposium, Kagoshima, Japan, 30 November 2016. [Google Scholar]
- Kawamura, S.; Kawasaki, M.; Nakatsuji, H.; Natsuga, M. Near-infrared spectroscopic sensing system for online monitoring of milk quality during milking. Sens. Instrum. Food Qual. Saf. 2007, 1, 37–43. [Google Scholar] [CrossRef]
- Tsenkova, R.; Atanassova, S.; Morita, H.; Ikuta, K.; Toyoda, K.; Iordanova, K.I.; Hakogi, E. Near Infrared Spectra of Cows’ Milk for Milk Quality Evaluation: Disease Diagnosis and Pathogen Identification. J. Near Infrared Spectrosc. 2006, 14, 363–370. [Google Scholar] [CrossRef]
- Iweka, P.; Kawamura, S.; Mitani, T.; Koseki, S. Non-destructive determination of bovine milk progesterone concentration during milking using near-infrared spectroscopy. CIGR J. 2020, 22, 171–178. [Google Scholar]
- Iweka, P.; Kawamura, S.; Morita, A.; Mitani, T.; Okatani, T.; Koseki, S. Development of a Near-infrared Spectroscopic Sensing System for Milk Quality Evaluation during Milking. In Proceedings of the International Conference on Agricultural Engineering (Automation, Environment and Food Safety), Aarhus, Denmark, 26–29 June 2016. [Google Scholar]
- Sato, T.; Yoshino, M.; Furukawa, S.; Someya, Y.; Yano, N.; Uozumi, J.; Iwamoto, M. Analysis of Near Infrared Milk Constituents by the Spectrophotometric Method. Jpn. J. Zootech. Sci. 1987, 58, 698–706. [Google Scholar] [CrossRef]
- Okere, E.E.; Arendse, E.; Tsige, A.A.; Perold, W.J.; Opara, U.L. Pomegranate Quality Evaluation Using Non-Destructive Approaches: A Review. Agriculture 2022, 12, 2034. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Defraeye, T.; Ketelaere, B.; Herremans, E.; Hertog, M.L.; Saeys, W.; Torricelli, A.; Vandendriessche, T.; Verboven, P. Nondestructive measurement of fruit and vegetable quality. Annu. Rev. Food. Sci. Technol. 2014, 5, 285–312. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, S.; Natsuga, M.; Takekura, K.; Itoh, K. Development of an automatic rice-quality inspection system. Comput. Electron. Agric. 2003, 40, 115–126. [Google Scholar] [CrossRef]
- Natsuga, M.; Nakamura, A.; Kawamura, S.; Kazuhiko, I. Determination of the Quality of High-Moisture Wheat using Near-Infrared Spectroscopy (Part 2). J. Jpn. Soc. Agri. Mach. 2003, 65, 100–107. [Google Scholar] [CrossRef]
- Iweka, P.; Kawamura, S.; Mitani, T.; Koseki, S. Effect of Cow Individuality and Calving times on accuracy of near-infrared spectroscopic sensing system for milk Quality Determination during Milking. In Proceedings of the 33rd NIR Forum, JCNIRS; Japan Council of NIR Spectroscopy: Tsukuba, Japan, 2017; p. 83. [Google Scholar]
- Kawasaki, M.; Kawamura, S.; Tsukahara, M.; Morita, S.; Komiya, M.; Natsuga, M. Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot. Comput Electron Agric. 2008, 63, 22–27. [Google Scholar] [CrossRef]
- Iweka, P.; Kawamura, S.; Mitani, T.; Kawaguchi, T.; Koseki, S. Cow Milk Progesterone Concentration Assessment during Milking Using Near-infrared Spectroscopy. EAEF 2021, 14, 30–36. [Google Scholar] [CrossRef]
Devices | Specifications |
---|---|
NIR spectrum sensor | Absorbance spectrum sensor |
Light source | Three halogen lamps |
Optical fiber | Quartz Fiber |
Milk chamber surface | Glass |
Volume of milk sample | Approx. 30 mL |
Distance between optical axis and milk level | 55 mm |
NIR spectrometer | Diffraction grating spectrometer |
Optical density | Absorbance |
Wavelength range | 700–1050 nm, 1-nm internal |
Wavelength resolution | Approx. 6.4 nm |
Photocell | CMOS linear array, 512 pixels |
Thermal controller | Heater and cooling fan |
Data processing computer | Windows 7 |
A/D converter | 16 bit |
Spectrum data acquisition | Every 20 s |
Milk Quality Indicators | n1 | n2 | Range | r2 | SEP | Bias | RPD | Regression Line |
---|---|---|---|---|---|---|---|---|
Fat (%) | 252 | 125 | 0.98–8.54 | 0.99 | 0.17 | 0.01 | 8.86 | y = 1.03 x − 0.11 |
Protein (%) | 252 | 125 | 2.76–4.46 | 0.79 | 0.22 | 0.01 | 2.16 | y = 0.91 x + 0.31 |
Lactose (%) | 252 | 125 | 3.99–4.97 | 0.71 | 0.12 | 0.01 | 1.86 | y = 0.98 x + 0.07 |
SNF (%) | 252 | 125 | 8.15–10.09 | 0.71 | 0.25 | 0.03 | 1.83 | y = 0.92 x + 0.71 |
SCC (log SCCmL−1) | 252 | 125 | 3.70–6.47 | 0.65 | 0.44 | -0.02 | 1.69 | y = 1.02 x − 0.09 |
Milk Quality Indicator | n | Range | r2 | SEP | Bias | RPD | Regression Line |
---|---|---|---|---|---|---|---|
Fat (%) | 20 | 1.96–5.79 | 0.98 | 0.15 | 0.05 | 6.92 | y = 0.98 x + 0.01 |
Protein (%) | 20 | 2.89–4.17 | 0.83 | 0.18 | −0.07 | 2.43 | y = 0.96 x + 0.22 |
Lactose (%) | 20 | 4.22–4.85 | 0.87 | 0.08 | 0.01 | 2.50 | y = 1.22 x − 1.01 |
SNF (%) | 20 | 8.59–9.82 | 0.94 | 0.10 | −0.02 | 4.08 | y = 0.96 x + 0.37 |
SCC (log SCC/mL) | 20 | 4.00–6.47 | 0.83 | 0.36 | −0.17 | 2.12 | y = 1.35 x − 1.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iweka, P.; Kawamura, S.; Mitani, T.; Kawaguchi, T. Online Near-Infrared Spectroscopy for the Measurement of Cow Milk Quality in an Automatic Milking System. Eng. Proc. 2023, 56, 145. https://doi.org/10.3390/ASEC2023-16302
Iweka P, Kawamura S, Mitani T, Kawaguchi T. Online Near-Infrared Spectroscopy for the Measurement of Cow Milk Quality in an Automatic Milking System. Engineering Proceedings. 2023; 56(1):145. https://doi.org/10.3390/ASEC2023-16302
Chicago/Turabian StyleIweka, Patricia, Shuso Kawamura, Tomohiro Mitani, and Takashi Kawaguchi. 2023. "Online Near-Infrared Spectroscopy for the Measurement of Cow Milk Quality in an Automatic Milking System" Engineering Proceedings 56, no. 1: 145. https://doi.org/10.3390/ASEC2023-16302
APA StyleIweka, P., Kawamura, S., Mitani, T., & Kawaguchi, T. (2023). Online Near-Infrared Spectroscopy for the Measurement of Cow Milk Quality in an Automatic Milking System. Engineering Proceedings, 56(1), 145. https://doi.org/10.3390/ASEC2023-16302