Modified Estimator of Finite Population Variance under Stratified Random Sampling †
Abstract
:1. Introduction
2. Notations and Some Existing Estimators
3. The Proposed Estimator
4. Efficiency Comparisons
- Comparing the proposed estimator’s MSE with that of the usual variance estimator, we have:
- Comparing the proposed estimator’s MSE with that of the usual ratio estimator defined by [5], we have:
- Comparing the proposed estimator’s MSE with that of the usual stratified regression estimator, we have:
- Comparing the proposed estimator’s MSE with that of the stratified estimator [15], we have:
- Comparing the proposed estimator’s MSE with that of [17]’s ratio-type and product-type estimators, respectively, we have:
- Comparing the proposed estimator’s MSE with that of [16]’s variance estimator, we have:
5. Empirical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zakari, Y.; Muhammad, I.; Sani, N.M. Alternative ratio-product type estimator in simple random sampling. Commun. Phys. Sci. 2020, 5, 418–426. [Google Scholar]
- Muhammad, I.; Zakari, Y.; Audu, A. An alternative class of ratio-regression-type estimator under two-phase sampling scheme. CBN J. Appl. Stat. 2021, 12, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Oyeyemi, G.M.; Muhammad, I.; Kareem, A.O. Combined Exponential-Type Estimators for Finite Population Mean in Two-Phase Sampling. Asian J. Probab. Stat. 2023, 21, 44–58. [Google Scholar] [CrossRef]
- Das, A.K.; Tripathi, T.P. Use of auxiliary information in estimating the finite population variance. Sankhya C 1978, 40, 139–148. [Google Scholar]
- Isaki, C.T. Variance estimation using auxiliary information. J. Am. Stat. Assoc. 1983, 78, 117–123. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Walid, A.D.; Ahmed, A.O.H. Some estimators for finite population variance under two-phase sampling. Stat. Transit. 2003, 6, 143–150. [Google Scholar]
- Kadilar, C.; Cingi, H. Ratio estimators for the population variance in simple and stratified random sampling. Appl. Math. Comput. 2006, 173, 1047–1059. [Google Scholar] [CrossRef]
- Upadhyaya, L.N.; Singh, H.P.; Singh, S. A class of estimators for estimating the variance of the ratio estimator. J. Jpn. Stat. Soc. 2004, 34, 47–63. [Google Scholar] [CrossRef]
- Swain AK, P.C. Generalized estimator of finite population variance. J. Stat. Theory Appl. 2015, 14, 45–51. [Google Scholar] [CrossRef]
- Sumramani, J.; Kumarapandiyan, G. Generalized modified ratio type estimator for estimation of population variance. Sri-Lankan J. Appl. Stat. 2015, 16, 69–90. [Google Scholar] [CrossRef]
- Singh, R.; Malik, S. Improved estimation of population variance using information on auxiliary attribute in simple random sampling. Appl. Math. Comput. 2014, 235, 43–49. [Google Scholar] [CrossRef]
- Yadav, S.K.; Kadilar, C.; Shabbir, J. Improved family of estimators of population variance in simple random sampling. J. Stat. Theory Pract. 2015, 9, 219–226. [Google Scholar] [CrossRef]
- Zakari, Y.; Muili, J.O.; Tela, M.N.; Danchadi, N.S.; Audu, A. Use of Unknown Weight to Enhance Ratio-Type Estimator in Simple Random Sampling. Lapai J. Appl. Nat. Sci. 2020, 5, 74–81. [Google Scholar]
- Muhammad, I.; Zakari, Y.; Audu, A. Generalized estimators for finite population variance using measurable and affordable auxiliary character. Asian Res. J. Math. 2022, 18, 14–30. [Google Scholar] [CrossRef]
- Rao, T.J. On certail methods of improving ratio and regression estimators. Commun. Stat.-Theory Methods 1991, 20, 3325–3340. [Google Scholar] [CrossRef]
- Shabbir, J.; Gupta, S. On improvement in variance estimation using auxiliary information. Commun. Stat.-Theory Methods 2010, 36, 2177–2185. [Google Scholar] [CrossRef]
- Singh, H.P.; Upadhyaya, L.N.; Namjoshi, U.D. Estimation of finite population variance. Curr. Sci. 2009, 57, 1331–1334. [Google Scholar]
- Ahmad, S.; Hussain, S.; Shabbir, J.; Zahid, E.; Aamir, M.; Onyango, R. Improved Estimation of Finite Population Variance Using Dual Supplementary Information under Stratified Random Sampling. Math. Probl. Eng. 2022, 2022, 3813952. [Google Scholar] [CrossRef]
- Koyuncu, N. Improved Estimators of Finite Population Variance in Stratified Random Sampling. World Appl. Sci. J. 2013, 23, 130–137. [Google Scholar]
Data Set | Source | Y | X |
---|---|---|---|
1 | [7] | Level of apple production | Rate of apple trees |
2 | [18] | Area under wheat in the region in 1974 | Area under wheat in the region in 1973 |
3 | [19] | Leaf area for the newly developed strain of wheat | Weight of leaves |
Parameters | |||||||
---|---|---|---|---|---|---|---|
Stratum 1 | 19 | 10 | 583,977.5 | 11.5715804 | 3.28 | 1.45 | 1.46 |
Stratum 2 | 32 | 16 | 456,563.3 | 8.139014 | 1.56 | 3.09 | 1.74 |
Stratum 3 | 14 | 7 | 195,208.8 | 12.4494617 | 1.62 | 1.62 | 1.80 |
Stratum 4 | 15 | 8 | 437,923.5 | 10.334267 | 2.22 | 1.90 | 2.02 |
Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
Stratum 1 | 9 | 3 | 0.1118928 | 31,978.25 | 11.5715804 | 2.9286 | 2.07 | 2.38 |
Stratum 2 | 10 | 3 | 0.0733753 | 37,629.39 | 8.139014 | 1.511 | 1.42 | 1.42 |
Stratum 3 | 15 | 4 | 0.11937840 | 6893.067 | 12.4494617 | 2.20 | 2.42 | 2.28 |
Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
Stratum 1 | 12 | 4 | 0.1118928 | 6.0664603 | 11.5715804 | 1.9394547 | 2.2748233 | 1.9123464 |
Stratum 2 | 13 | 5 | 0.0733753 | 5.2915229 | 8.139014 | 2.9819269 | 3.436904 | 2.970998 |
Stratum 3 | 14 | 5 | 0.1193784 | 6.4961301 | 12.4494617 | 2.3448986 | 2.8955496 | 2.5134376 |
Dataset 1 | Dataset 2 | Dataset 3 | |
---|---|---|---|
Sample Variance | 0 | 0 | 0 |
[5]’s Ratio Estimator | 83.79038 | −27.989 | 0.01521998 |
[5]’s Regression | 0 | 0 | 0 |
[15]’s Estimator | 21539.92 | 16941.3 | 1.338503 |
[17]’s Ratio | 10.84317 | −46.103 | −0.00092405 |
[17]’s Product | 51.26086 | 110.319 | 0.01799213 |
[16]’s | 76.34123 | 154.855 | 0.1906794 |
Proposed Estimator | 3.20301640 | 2.1320047 | −0.00200567 |
Dataset 1 | Dataset 2 | Dataset 3 | ||||
---|---|---|---|---|---|---|
MSE | PRE | MSE | PRE | MSE | PRE | |
Sample Variance | 419,607.1 | 100.00 | 188,354.1 | 100.00 | 0.004715021 | 100.00 |
[5]’s Ratio Estimator | 220,271.5 | 190.50 | 21,269.09 | 885.58 | 0.0009897653 | 476.38 |
[5]’s Regression | 254,877.6 | 164.63 | 20,959.36 | 898.66 | 0.0008908265 | 529.29 |
[15]’s Estimator | 1,204,329 | 34.84 | 885,096.4 | 21.28 | 0.0036798567 | 128.13 |
[17]’s Ratio | 298,307.4 | 140.66 | 62,669.71 | 300.55 | 0.0010637556 | 443.24 |
[17]’s Product | 762,244.1 | 55.05 | 292,602.2 | 64.37 | 0.008128177 | 58.01 |
[16]’s | 254,968 | 164.57 | 11,841.29 | 1590.66 | 0.002745902 | 171.71 |
Proposed Estimator | 220,094.1 | 190.65 | 9616.144 | 1958.73 | 0.000173869 | 2711.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakari, Y.; Muhammad, I. Modified Estimator of Finite Population Variance under Stratified Random Sampling. Eng. Proc. 2023, 56, 177. https://doi.org/10.3390/ASEC2023-16308
Zakari Y, Muhammad I. Modified Estimator of Finite Population Variance under Stratified Random Sampling. Engineering Proceedings. 2023; 56(1):177. https://doi.org/10.3390/ASEC2023-16308
Chicago/Turabian StyleZakari, Yahaya, and Isah Muhammad. 2023. "Modified Estimator of Finite Population Variance under Stratified Random Sampling" Engineering Proceedings 56, no. 1: 177. https://doi.org/10.3390/ASEC2023-16308
APA StyleZakari, Y., & Muhammad, I. (2023). Modified Estimator of Finite Population Variance under Stratified Random Sampling. Engineering Proceedings, 56(1), 177. https://doi.org/10.3390/ASEC2023-16308