Analytical Modeling of a Transmission Coefficient for Ultrasonic Waves in Human Cancellous Bone †
Abstract
:1. Introduction
2. Theoretical Model
3. Numerical Simulations
3.1. Influence of Physical Parameters on the Ultrasonic Transmitted Wave
3.1.1. Effect of Porosity (ϕ)
3.1.2. Effect of Tortuosity ()
3.1.3. Effect of Viscous Characteristic Length (Λ)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parfitt, A.M. Bone Remodeling and Bone Loss: Understanding the Pathophysiology of Osteoporosis. Clin. Obstet. Gynecol. 1987, 30, 789–811. [Google Scholar] [CrossRef] [PubMed]
- Mano, I.; Horii, K.; Takai, S.; Suzaki, T.; Nagaoka, H.; Otani, T. Development of Novel Ultrasonic Bone Densitometry Using Acoustic Parameters of Cancellous Bone for Fast and Slow Waves. Jpn J. Appl. Phys. 2006, 45, 4700–4702. [Google Scholar] [CrossRef]
- Cepollaro, C.; Gonnelli, S.; Montagnani, A.; Caffarelli, C.; Cadirni, A.; Martini, S.; Nuti, R. In Vivo Performance Evaluation of the Achilles Insight QUS Device. J. Clin. Densitom. 2005, 8, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gilbert, R.P.; Guyenne, P. A Biot model for the determination of material parameters of cancellous bone from acoustic measurements. Inverse Probl. 2018, 34, 085009. [Google Scholar] [CrossRef]
- Pakula, M.; Padilla, F.; Laugier, P. Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz. J. Acoust. Soc. Am. 2009, 126, 3301–3310. [Google Scholar] [CrossRef] [PubMed]
- Bouhlel, M.; Jamei, M.; Geindreau, C. Microstructural effects on the overall poroelastic properties of saturated porous media. Model. Simul. Mater. Sci. Eng. 2010, 18, 045009. [Google Scholar] [CrossRef]
- Lee, K.L.; Hughes, E.R.; Humphrey, V.F.; Leighton, T.G.; Choi, M.J. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone. Phys. Med. Biol 2006, 52, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Sadouki, M.; Fellah, M.; Fellah, Z.; Ogam, E.; Depollier, C. Ultrasonic propagation of reflected waves in cancellous bone: Application of Biot theory. 2015 6th European Symposium on Ultrasonic Characterization of Bone. In Proceedings of the 2015 6th European Symposium on Ultrasonic Characterization of Bone, Corfu, Greece, 10–12 June 2015. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range. J. Acoust. Soc. Am. 1956, 28, 179–191. [Google Scholar] [CrossRef]
- Johnson, D.L.; Koplik, J.; Dashen, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 1987, 176, 379. [Google Scholar] [CrossRef]
- Mahiou, A.; Sadouki, M. An Inverse Method Based on Impedance Tubes for Determining Low-Frequency Non-acoustic Parameters of Rigid Porous Media. J. Vib. Eng. Technol. 2023. [Google Scholar] [CrossRef]
- Sadouki, M. RETRACTED: Experimental characterization of human cancellous bone via the first ultrasonic reflected wave—Application of Biot’s theory. Appl. Acoust. 2020, 163, 107237. [Google Scholar] [CrossRef]
- Sadouki, M. Experimental characterization of air-saturated porous material via low-frequencies ultrasonic transmitted waves. Phys. Fluids 2021, 33, 037102. [Google Scholar] [CrossRef]
Sample | φ | α∞ | Λ (μm) | Es (GPa) | Eb (GPa) | ρs (kg±m−3) | |
---|---|---|---|---|---|---|---|
S | 0.87 | 1.05 | 90.0 | 30.0 | 2.5 | 0.40 | 1990 |
Fluid | Ρf (kg±m−3) | Kf (GPa) | η (Pas) | ||||
1000 | 2.3 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadouki, M.; Mahiou, A. Analytical Modeling of a Transmission Coefficient for Ultrasonic Waves in Human Cancellous Bone. Eng. Proc. 2023, 56, 179. https://doi.org/10.3390/ASEC2023-15952
Sadouki M, Mahiou A. Analytical Modeling of a Transmission Coefficient for Ultrasonic Waves in Human Cancellous Bone. Engineering Proceedings. 2023; 56(1):179. https://doi.org/10.3390/ASEC2023-15952
Chicago/Turabian StyleSadouki, Mustapha, and Abdelmadjid Mahiou. 2023. "Analytical Modeling of a Transmission Coefficient for Ultrasonic Waves in Human Cancellous Bone" Engineering Proceedings 56, no. 1: 179. https://doi.org/10.3390/ASEC2023-15952
APA StyleSadouki, M., & Mahiou, A. (2023). Analytical Modeling of a Transmission Coefficient for Ultrasonic Waves in Human Cancellous Bone. Engineering Proceedings, 56(1), 179. https://doi.org/10.3390/ASEC2023-15952