An Electrode Based on Manganese Dioxide Nanorods and Hexadecylpyridinium Bromide for the Rosmarinic Acid Voltammetric Assay †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Voltammetric Characteristics of Rosmarinic Acid
3.2. Determination of Rosmarinic Acid Using MnO2 NRs–HDPB/GCE
Rosemary Spices Analysis
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petersen, M.; Simmonds, M.S.J. Rosmarinic acid. Phytochemistry 2003, 62, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Fachel, F.N.S.; Pra, M.D.; Azambuja, J.H.; Endres, M.; Bassani, V.L.; Koester, L.S.; Henriques, A.T.; Barschak, A.G.; Teixeira, H.F.; Braganhol, E. Glioprotective effect of chitosan-coated rosmarinic acid nanoemulsions against lipopolysaccharide-induced inflammation and oxidative stress in rat astrocyte primary cultures. Cell. Mol. Neurobiol. 2020, 40, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi, M.; Mostafavi, A.; Torkzadeh-Mahani, M. Voltammetric determination of rosmarinic acid on chitosan/carbon nanotube composite-modified carbon paste electrode covered with DNA. J. Electrochem. Soc. 2015, 162, B344–B349. [Google Scholar] [CrossRef]
- Wang, K.; Cui, X.; Zheng, Y.; Liu, B.; Sang, H.; Dong, R. Electrochemical determination of rosmarinic acid in edible flowers using ionic liquid modified electrode. Int. J. Electrochem. Sci. 2022, 17, 221284. [Google Scholar] [CrossRef]
- Santhiago, M.; Peralta, R.A.; Neves, A.; Micke, G.A.; Vieira, I.C. Rosmarinic acid determination using biomimetic sensor based on purple acid phosphatase mimetic. Anal. Chim. Acta 2008, 613, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Özdokur, K.V.; Koçak, Ç.C. Simultaneous determination of rosmarinic acid and protocatechuic acid at poly(o-phenylenediamine)/Pt nanoparticles modified glassy carbon electrode. Electroanalysis 2019, 31, 2359–2367. [Google Scholar] [CrossRef]
- Alipour, S.; Azar, P.A.; Husain, S.W.; Rajabi, H.R. Determination of rosmarinic acid in plant extracts using a modified sensor based on magnetic imprinted polymeric nanostructures. Sens. Actuators B 2020, 323, 128668. [Google Scholar] [CrossRef]
- Tehseen, B.; Rehman, A.; Rahmat, M.; Bhatti, H.N.; Wu, A.; Butt, F.K.; Naz, G.; Khan, W.S.; Bajwa, S.Z. Solution growth of 3D MnO2 mesh comprising 1D nanofibres as a novel sensor for selective and sensitive detection of biomolecules. Biosens. Bioelectron. 2018, 117, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Gimadutdinova, L.; Ziyatdinova, G.; Davletshin, R. Selective voltammetric sensor for the simultaneous quantification of tartrazine and brilliant blue FCF. Sensors 2023, 23, 1094. [Google Scholar] [CrossRef] [PubMed]
- Ziyatdinova, G.; Budnikov, H. Natural phenolic antioxidants in bioanalytical chemistry: State of the art and prospects of development. Russ. Chem. Rev. 2015, 84, 194–224. [Google Scholar] [CrossRef]
- Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules 2020, 21, 1576. [Google Scholar] [CrossRef] [PubMed]
- Hcini, K.; Sotomayor, J.A.; Jordan, M.J.; Bouzid, S. Identification and quantification of phenolic compounds of tunisian Rosmarinus officinalis L. Asian J. Chem. 2013, 25, 9299–9301. [Google Scholar] [CrossRef]
- Borrás-Linares, I.; Stojanović, Z.; Quirantes-Piné, R.; Arráez-Román, D.; Švarc-Gajić, J.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int. J. Mol. Sci. 2014, 15, 20585–20606. [Google Scholar] [CrossRef] [PubMed]
Electrode | Ea (mV) | Ia (μA) | Ec (mV) | Ic (μA) | Ic/Ia |
---|---|---|---|---|---|
Bare GCE | 522 | 0.11 ± 0.01 | 462 | 0.10 ± 0.005 | 0.91 |
MnO2 NRs–HDPB/GCE | 532 | 0.180 ± 0.005 | 472 | 0.170 ± 0.004 | 0.94 |
Rosemary Sample | Antioxidant Capacity (μg of Rosmarinic Acid g−1) | RSD (%) |
---|---|---|
1 | 219 ± 7 | 2.5 |
2 | 737 ± 27 | 3.0 |
3 | 186 ± 5 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziyatdinova, G. An Electrode Based on Manganese Dioxide Nanorods and Hexadecylpyridinium Bromide for the Rosmarinic Acid Voltammetric Assay. Eng. Proc. 2023, 56, 202. https://doi.org/10.3390/ASEC2023-15254
Ziyatdinova G. An Electrode Based on Manganese Dioxide Nanorods and Hexadecylpyridinium Bromide for the Rosmarinic Acid Voltammetric Assay. Engineering Proceedings. 2023; 56(1):202. https://doi.org/10.3390/ASEC2023-15254
Chicago/Turabian StyleZiyatdinova, Guzel. 2023. "An Electrode Based on Manganese Dioxide Nanorods and Hexadecylpyridinium Bromide for the Rosmarinic Acid Voltammetric Assay" Engineering Proceedings 56, no. 1: 202. https://doi.org/10.3390/ASEC2023-15254
APA StyleZiyatdinova, G. (2023). An Electrode Based on Manganese Dioxide Nanorods and Hexadecylpyridinium Bromide for the Rosmarinic Acid Voltammetric Assay. Engineering Proceedings, 56(1), 202. https://doi.org/10.3390/ASEC2023-15254