Can Ammonium Tartrate Replace Alanine in EPR Radiation Dosimetry? †
Abstract
:1. Introduction
2. Instruments, Materials, and Methods
2.1. Radiation Source and Radiation Dose Measurements
2.2. EPR System
2.3. Sample Preparation and Evaluation Method
3. Results and Discussion
3.1. Induced Radical
3.2. Time Dependence
3.3. Response to Gamma Radiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bradshaw, W.; Cadena, E.; Crawford, G.; Spetzler, H. The use of alanine as a solid dosimeter. Radiat. Res. 1962, 17, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Regulla, D.F.; Deffner, U.; Tuschy, H. IAEA Technical Reports Series No. 205; IAEA: Vienna, Austria, 1981; p. 139. [Google Scholar]
- Sagstuen, E.; Hole, E.; Haugedal, S.; Nelson, W. Alanine radicals: Structure determination by EPR and ENDOR of single crystals X-irradiated at 295 K. J. Phys. Chem. A 1997, 101, 9763–9772. [Google Scholar] [CrossRef]
- Nagy, V.; Desrosiers, M. Complex time dependence of the EPR signal of irradiated L-α-alanine. Appl. Radiat. Isot. 1996, 47, 789–793. [Google Scholar] [CrossRef]
- Maghraby, A. Uncertainty Attributed To Signal Averaging In aSingle Averaged Alanine EPR Spectrum for Low-Dose Applications. Radiat. Prot. Dosim. 2011, 143, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Guidelli, E.J.; Ramos, A.P.; Zaniquelli, M.E.; Nicolucci, P.; Baffa, O. Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors. ACS Appl. Mater. Interfaces 2012, 4, 5844–5851. [Google Scholar] [CrossRef]
- Maghraby, A.M. Applying the conventional moving average filter for estimation of low radiation doses using EPR spectroscopy: Benefits and drawbacks. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 737, 71–75. [Google Scholar] [CrossRef]
- Haskell, E.H.; Hayes, R.B.; Kenner, G.H. A high sensitivity EPR technique for alanine dosimetry. Radiat. Prot. Dosim. 1998, 77, 43–49. [Google Scholar] [CrossRef]
- Maghraby, A.M.; Mansour, A.; Abdel-Fattah, A.A. Taurine-EVA copolymer-paraffin rods dosimeters for EPR high-dose radiation dosimetry. Nukleonika 2014, 59, 9–13. [Google Scholar] [CrossRef]
- Belahmar, A.; Mikou, M.; Hoehr, C.; El Ghalmi, M. Cumulative dose experiments on Lithium formate monohydrate as an EPR-dosimeter for use in different radiation therapy scenarios. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2022, 532, 1–6. [Google Scholar] [CrossRef]
- Maghraby, A. A sensitive EPR dosimetry system based on sulfamic acid. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 262, 46–50. [Google Scholar] [CrossRef]
- Maghraby, A.; Tarek, E. A new EPR dosimeter based on sulfanilic acid. Radiat. Meas. 2006, 41, 170–176. [Google Scholar] [CrossRef]
- Maghraby, A.; Salama, E.; Mansour, A. EPR/homotaurine: A possible dosimetry system for high doses. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 659, 504–507. [Google Scholar] [CrossRef]
- Chen, F.; Graeff, C.F.O.; Baffa, O. Response of L-alanine and 2-methylalanine minidosimeters for K-Band (24 GHz) EPR dosimetry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 264, 277–281. [Google Scholar] [CrossRef]
- Olsson, S.; Bagherian, S.; Lund, E.; Carlsson, A.G.; Lund, A. Ammonium tartrate as an ESR dosimeter material. Appl. Radiat. Isot. 1999, 50, 955–965. [Google Scholar] [CrossRef]
- Brustolon, M.; Lisa Maniero, A.; Jovine, S.; Segre, U. ENDOR and ESEEM study of the radical obtained by gamma irradiation of a single ammonium tartrate. Res. Chem. Intermed. 1996, 22, 359–368. [Google Scholar] [CrossRef]
- Bartolotta, A.; D’Oca, M.C.; Brai, M.; Caputo, V.; De Caro, V.; Giannola, L.I. Response characterization of ammonium tartrate solid state pellets for ESR dosimetry with radiotherapeutic photon and electron beams. Phys. Med. Biol. 2001, 46, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Brustolon, M.; Tampieri, F.; Marrale, M.; Barbon, A. Determination of new radical species in ammonium tartrate dosimeters by CW- and pulsed-EPR techniques. Appl. Magn. Reson. 2015, 46, 481–488. [Google Scholar] [CrossRef]
- Marrale, M.; Brai, M.; Longo, A.; Panzeca1, S.; Tranchina, L.; Tomarchio, E.; Parlato, A.; Buttafava, A.; Dondi, D. Neutron ESR dosimetry through ammonium tartrate with low Gd content. Radiat. Prot. Dosim. 2014, 159, 233–236. [Google Scholar] [CrossRef]
- Sagstuen, E.; Kugler, V.; Hole, E.; Lund, A. Radicals in ammonium tartrate at 295 K by X-radiation: Revised radical structures by EMR and DFT analyses. Radiat. Phys. Chem. 2022, 196, 110097. [Google Scholar] [CrossRef]
- Bal, M.O.; Tuner, H. Investigation of radiation sensitivity of some tartrate compounds. Radiat. Protect. Dosim. 2014, 159, 199–202. [Google Scholar] [CrossRef]
- Nor, N.M.; Hashim, S.; Ramli, A.T.; Saion, E.; Kadni, T. EPR dosimeter material properties of potassium tartrate hemihydrate. Radiat. Meas. 2016, 87, 8–12. [Google Scholar] [CrossRef]
- Maghraby, A.; Soltan Moneim, A.; Eissa, H. Investigation of the dosimetric properties of potassium hydrogen tartrate using EPR. Radiat. Phys. Chem. 2023, 210, 111026. [Google Scholar] [CrossRef]
- Maghraby, A.; Soltan Moneim, A.; Eissa, H. EPR dosimetric properties of di-sodium tartrate. Radiat. Prot. Dosim. 2023, 199, 418–425. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Technical Report Series No. 381, the Use of Plane Parallel Ionization Chambers in High Energy Electron and Photon Beams; International Atomic Energy Agency: Vienna, Austria, 1997. [Google Scholar]
Air Kerma (Gy) | Ammonium Tartrate | Alanine | ||
---|---|---|---|---|
Percentage Precision | Combined Uncertainty | Percentage Precision | Combined Uncertainty | |
2500 | 0.06 | 0.48 | 0.14 | 0.48 |
1230 | 0.17 | 0.48 | 0.13 | 0.48 |
824 | 0.21 | 0.48 | 0.40 | 0.48 |
410 | 0.14 | 0.48 | 0.65 | 0.49 |
221 | 0.67 | 0.49 | 0.28 | 0.48 |
85 | 1.61 | 0.50 | 0.78 | 0.49 |
42 | 2.52 | 0.55 | 1.30 | 0.50 |
11 | 3.18 | 0.58 | 7.08 | 0.86 |
5.7 | 7.35 | 0.88 | 24.77 | 2.52 |
2.8 | 3.21 | 0.58 | 13.83 | 1.47 |
1.4 | 4.99 | 0.70 | 17.79 | 1.84 |
0.85 | 5.78 | 2.13 | 33.69 | 3.40 |
0.57 | 10.82 | 1.19 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghraby, A.M.; Monem, A.S.; Eissa, H.M. Can Ammonium Tartrate Replace Alanine in EPR Radiation Dosimetry? Eng. Proc. 2023, 56, 210. https://doi.org/10.3390/ASEC2023-15389
Maghraby AM, Monem AS, Eissa HM. Can Ammonium Tartrate Replace Alanine in EPR Radiation Dosimetry? Engineering Proceedings. 2023; 56(1):210. https://doi.org/10.3390/ASEC2023-15389
Chicago/Turabian StyleMaghraby, Ahmed Mohamed, Ahmed Soltan Monem, and Hoda Mohamed Eissa. 2023. "Can Ammonium Tartrate Replace Alanine in EPR Radiation Dosimetry?" Engineering Proceedings 56, no. 1: 210. https://doi.org/10.3390/ASEC2023-15389
APA StyleMaghraby, A. M., Monem, A. S., & Eissa, H. M. (2023). Can Ammonium Tartrate Replace Alanine in EPR Radiation Dosimetry? Engineering Proceedings, 56(1), 210. https://doi.org/10.3390/ASEC2023-15389