The Development of a Mobile E-Nose System for Real-Time Beef Quality Monitoring and Spoilage Detection †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electronic Nose System
2.2. Sampling and Sensing
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alfaia, C.; Lopes, A.; Prates, J. Cooking and diet quality: A focus on meat. In Diet Quality. An Evidence-Based Approach; Preedy, V., Hunter, A., Patel, V., Eds.; Humana Press: New York, NY, USA, 2013; Volume 1, pp. 257–284. [Google Scholar]
- Wijaya, D.R.; Afianti, F. Information-theoretic ensemble feature selection with multi-stage aggregation for sensor array optimization. IEEE Sens. J. 2020, 21, 476–489. [Google Scholar] [CrossRef]
- Pellissery, A.J.; Vinayamohan, P.G.; Amalaradjou, M.A.R.; Venkitanarayanan, K. Spoilage bacteria and meat quality. In Meat Quality Analysis; Academic Press: Cambridge, MA, USA, 2020; pp. 307–334. [Google Scholar]
- Wakhid, S.; Sarno, R.; Sabilla, S.I. The effect of gas concentration on detection and classification of beef and pork mixtures using E-nose. Comput. Electron. Agric. 2022, 195, 106838. [Google Scholar] [CrossRef]
- Huang, C.; Gu, Y. A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose. Foods 2022, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, O.S.; Panagou, E.Z.; Mohareb, F.R.; Nychas, G.-J.E. Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis. Food Res. Int. 2013, 50, 241–249. [Google Scholar] [CrossRef]
- Wijaya, D.R.; Sarno, R.; Zulaika, E. DWTLSTM for electronic nose signal processing in beef quality monitoring. Sens. Actuators B Chem. 2021, 326, 128931. [Google Scholar] [CrossRef]
- Barai, B.; Nayak, R.; Singhal, R.; Kulkarni, P. Approaches to the detection of meat adulteration. Trends Food Sci. Technol. 1992, 3, 69–72. [Google Scholar] [CrossRef]
- Binson, V.A.; George, M.M.; Sibichan, M.A.; Raj, M.; Prasad, K. Freshness Evaluation of Beef using MOS Based E-Nose. In Proceedings of the 2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), Bangalore, India, 5–7 January 2023; IEEE: Bangalore, India, 2023. [Google Scholar]
- Panigrahi, S.; Balasubramanian, S.; Gu, H.; Logue, C.; Marchello, M. Neural-network-integrated electronic nose system for identification of spoiled beef. LWT-Food Sci. Technol. 2006, 39, 135–145. [Google Scholar] [CrossRef]
- Binson, V.A.; Thomas, S.; Ragesh, G.; Kumar, A. Non-invasive Diagnosis of COPD with E-nose Using XGBoost Algorithm. In Proceedings of the 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS), Kerala, India, 4 September 2021; IEEE: Bangalore, India, 2021. [Google Scholar]
- Scarlata, S.; Finamore, P.; Meszaros, M.; Dragonieri, S.; Bikov, A. The Role of Electronic Noses in Phenotyping Patients with Chronic Obstructive Pulmonary Disease. Biosensors 2020, 10, 171. [Google Scholar] [CrossRef] [PubMed]
- Binson, V.A.; Subramoniam, M.; Mathew, L. Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose. J. Breath Res. 2021, 15, 46003. [Google Scholar] [CrossRef] [PubMed]
- Binson, V.A.; Akbar, R.; Thankachan, N.; Thomas, S. Design and construction of a portable e-nose system for human exhaled breath VOC analysis. Mater. Today Proc. 2022, 58, 422–427. [Google Scholar] [CrossRef]
- Güntner, A.T.; Abegg, S.; Königstein, K.; Gerber, P.A.; Schmidt-Trucksäss, A.; Pratsinis, S.E. Breath Sensors for Health Monitoring. ACS Sens. 2019, 4, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Binson, V.A.; Subramoniam, M.; Mathew, L. Noninvasive detection of COPD and Lung Cancer through breath analysis using MOS Sensor array based e-nose. Expert Rev. Mol. Diagn. 2021, 21, 1223–1233. [Google Scholar]
- Wijaya, D.R.; Sarno, R.; Zulaika, E.; Afianti, F. Electronic nose homogeneous data sets for beef quality classification and microbial population prediction. BMC Res. Notes 2022, 15, 237. [Google Scholar] [CrossRef] [PubMed]
- Binson, V.A.; Subramoniam, M.; Sunny, Y.; Mathew, L. Prediction of Pulmonary Diseases with Electronic Nose Using SVM and XGBoost. IEEE Sens. J. 2021, 21, 20886–20895. [Google Scholar] [CrossRef]
- Binson, V.A.; Subramoniam, M. Design and development of an e-nose system for the diagnosis of pulmonary diseases. Acta Bioeng. Biomech. 2021, 23, 35–44. [Google Scholar] [CrossRef] [PubMed]
Model Number | Detected Compounds | Range (ppm) |
---|---|---|
MQ 135 | Ammonia, Benzene, Carbon Dioxide, and Alcohol | 10–200 |
MQ 137 | Ammonia and Carbon Monoxide | 5–500 |
MQ 9 | Methane, Carbon Monoxide, and LPG | 10–10,000 |
MQ 3 | Alcohol, Carbon Monoxide, Benzene, Hexane, Methane, and LPG | 25–500 |
TGS 822 | Acetone, Ethanol, Benzene, and Methane | 50–5000 |
TGS 2620 | Carbon Monoxide, Ethanol, Isobutane, and Methane | 50–5000 |
TGS 2610 | Ethanol, Methane, Propane, and Isobutane | 300–10,000 |
TGS 2600 | Methane, Isobutane, Ethanol, and Carbon Monoxide | 1–100 |
Parameters | SVM Model |
---|---|
Accuracy (%) | 95.89 |
Recall (%) | 91.23 |
Precision (%) | 98.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binson, V.A.; Thomas, S. The Development of a Mobile E-Nose System for Real-Time Beef Quality Monitoring and Spoilage Detection. Eng. Proc. 2023, 56, 256. https://doi.org/10.3390/ASEC2023-15960
Binson VA, Thomas S. The Development of a Mobile E-Nose System for Real-Time Beef Quality Monitoring and Spoilage Detection. Engineering Proceedings. 2023; 56(1):256. https://doi.org/10.3390/ASEC2023-15960
Chicago/Turabian StyleBinson, V. A., and Sania Thomas. 2023. "The Development of a Mobile E-Nose System for Real-Time Beef Quality Monitoring and Spoilage Detection" Engineering Proceedings 56, no. 1: 256. https://doi.org/10.3390/ASEC2023-15960
APA StyleBinson, V. A., & Thomas, S. (2023). The Development of a Mobile E-Nose System for Real-Time Beef Quality Monitoring and Spoilage Detection. Engineering Proceedings, 56(1), 256. https://doi.org/10.3390/ASEC2023-15960