Assessing the Drought Vulnerability of Alberta: A Deep Learning Approach for Hydro-Climatological Analysis †
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area and Dataset
2.2. Standard Precipitation Index (SPI)
2.3. Long Short-Term Memory
2.4. Evaluation Criteria
3. Results
3.1. Standard Precipitation Index (SPI)
3.2. Statistical Downscaling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Romm, J. The next dust bowl. Nature 2011, 478, 450–451. [Google Scholar] [CrossRef] [PubMed]
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions; Routledge: London, UK, 2000. [Google Scholar]
- Seneviratne, S.I. Historical drought trends revisited. Nature 2012, 491, 338–339. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Hipps, L.; Gillies, R.R.; Yoon, J.H. Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett. 2014, 41, 3220–3226. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Anshuka, A.; van Ogtrop, F.F.; Vervoort, R.W. Drought forecasting through statistical models using standardized precipitation index: A systematic review and meta-regression analysis. Nat. Hazards 2019, 97, 955–977. [Google Scholar] [CrossRef]
- Baghanam, A.H.; Nourani, V.; Bejani, M. AI-Based Statistical Downscaling of Precipitation and Temperature via Convolutional Neural Network Using Nonlinear Predictor Screening Approach. In Proceedings of the International Conference on Natural Resources and Sustainable Environmental Management, Nicosia, Cyprus, 8–12 November 2021; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Gers, F. Long Short-Term Memory in Recurrent Neural Networks; Ecole Polytechnique Fédérale de Lausanne: Lausanne, Switzerland, 2001; Available online: http://www.felixgers.de/papers/phd.pdf (accessed on 15 September 2023).
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index: User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Nourani, V.; Sadikoglu, F.; Khodkar, K.; Shahli, A. Downscaling precipitation from GCM parameters using recurrent neural networks. In Proceedings of the International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions, Antalya, Turkey, 23–24 August 2021. [Google Scholar]
Stations | Evaluating Criteria | Training | Validation |
---|---|---|---|
Station 1 | DC | 0.71 | 0.69 |
RMSE (mm) | 15.61 | 18.91 | |
Station 2 | DC | 0.81 | 0.78 |
RMSE (mm) | 13.54 | 14.95 | |
Station 3 | DC | 0.79 | 0.74 |
RMSE (mm) | 13.90 | 15.41 | |
Station 4 | DC | 0.68 | 0.58 |
RMSE (mm) | 18.38 | 19.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nourani, V.; Pourali, H.; Bejani, M.; Baghanam, A.H. Assessing the Drought Vulnerability of Alberta: A Deep Learning Approach for Hydro-Climatological Analysis. Eng. Proc. 2023, 56, 309. https://doi.org/10.3390/ASEC2023-15255
Nourani V, Pourali H, Bejani M, Baghanam AH. Assessing the Drought Vulnerability of Alberta: A Deep Learning Approach for Hydro-Climatological Analysis. Engineering Proceedings. 2023; 56(1):309. https://doi.org/10.3390/ASEC2023-15255
Chicago/Turabian StyleNourani, Vahid, Hadi Pourali, Mohammad Bejani, and Aida Hosseini Baghanam. 2023. "Assessing the Drought Vulnerability of Alberta: A Deep Learning Approach for Hydro-Climatological Analysis" Engineering Proceedings 56, no. 1: 309. https://doi.org/10.3390/ASEC2023-15255
APA StyleNourani, V., Pourali, H., Bejani, M., & Baghanam, A. H. (2023). Assessing the Drought Vulnerability of Alberta: A Deep Learning Approach for Hydro-Climatological Analysis. Engineering Proceedings, 56(1), 309. https://doi.org/10.3390/ASEC2023-15255