A Simulation and Optimization Methodology Based on Reverse Engineering †
Abstract
:1. Introduction
2. Numerical Procedure
3. Results and Discussion
3.1. Evaluation/Assessment
3.2. Optimized Model vs. INITIAL
3.3. Simulation
4. Conclusions and Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- von Drigalski, F.; Yoshioka, D.; Yamazaki, W.; Cho, S.-G.; Gall, M.; Eljuri PM, U.; Hoerig, V.; Ding, M.; Takamatsu, J.; Ogasawara, T.; et al. NAIST Openhand M2S: A Versatile Two-Finger Gripper Adapted for Pulling and Tucking Textile. In Proceedings of the 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 10–12 April 2017; pp. 117–122. [Google Scholar]
- Le, L.; Zoppi, M.; Jilich, M.; Camoriano, R.; Zlatanov, D.; Molfino, R. Development and analysis of a new specialized gripper mechanism for garment handling. In Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA, 4–7 August 2013; p. V06BT07A013. [Google Scholar]
- Koustoumpardis, P.N.; Nastos, K.X.; Aspragathos, N.A. Underactuated 3-finger robotic gripper for grasping fabrics. In Proceedings of the 2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD), Smolenice, Slovakia, 3–5 September 2014; pp. 1–8. [Google Scholar]
- Koustoumpardis, P.; Smyrnis, S.; Aspragathos, N. A 3-Finger Robotic Gripper for Grasping Fabrics Based on Cams-Followers Mechanism. In Advances in Service and Industrial Robotics: Proceedings of the 26th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2017; Springer: Cham, Switzerland, 2018; pp. 612–620. ISBN 978-3-319-61275-1. [Google Scholar]
- Ono, E.; Ichijou, H.; Aisaka, N. Robot hand for handling cloth. In Proceedings of the Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments, Pisa, Italy, 19–22 June 1991; pp. 769–774. [Google Scholar]
- Murakami, K.; Hasegawa, T. Novel fingertip equipped with soft skin and hard nail for dexterous multifingered robotic manipulation. J. Robot. Soc. Jpn. 2004, 22, 616–624. [Google Scholar] [CrossRef]
- Ono, E.; Kitagaki, K.; Kakikura, M. Picking up a piece of fabric from layers by a hand with 3 fingers and a palm. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No. 01CH37180), Maui, HI, USA, 29 October–3 November 2001; Volume 2, pp. 931–936. [Google Scholar]
- Shibata, M.; Hirai, S. Fabric manipulation utilizing contacts with the environment. In Proceedings of the 2012 IEEE International Conference on Automation Science and Engineering (CASE), Seoul, Republic of Korea, 20–24 August 2012; pp. 442–447. [Google Scholar]
- Dong, H.; Asadi, E.; Qiu, C.; Dai, J.; Chen, I.-M. Geometric design optimization of an under-actuated tendon-driven robotic gripper. Robot. Comput.-Integr. Manuf. 2018, 50, 80–89. [Google Scholar] [CrossRef]
- Hassan, A.; Abomoharam, M. Modeling and design optimization of a robot gripper mechanism. Robot. Comput.-Integr. Manuf. 2017, 46, 94–103. [Google Scholar] [CrossRef]
- Saravanan, R.; Ramabalan, S.; Ebenezer NG, R.; Dharmaraja, C. Evolutionary multi criteria design optimization of robot grippers. Appl. Soft Comput. 2009, 9, 159–172. [Google Scholar] [CrossRef]
- Elmackias, O.; Zaretzky, T.; Segev, R. Optimization of robot gripping forces and worst case loading. Appl. Eng. Sci. 2021, 7, 100045. [Google Scholar] [CrossRef]
- Rochu Website. Available online: https://www.softroboticgripper.com/ (accessed on 2 May 2023).
- Matweb.com. Available online: https://bit.ly/3RGRMLb (accessed on 2 May 2023).
Initial [mm] | Optimized [mm] | Variation [%] | |
---|---|---|---|
Parameter ID 1 | 25 | 28.6000 | 14.40 |
Parameter ID 2 | 40 | 42.8200 | 7.05 |
Parameter ID 3 | 25 | 22.0519 | −11.79 |
Initial | Final | Imp [%] | |
---|---|---|---|
δy [mm] | 3.140 | 1.837 | 41.50 |
σHM [MPa] | 12.316 | 8.764 | 28.84 |
mass | 12.96 | 13.241 | −2.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, H.M. A Simulation and Optimization Methodology Based on Reverse Engineering. Eng. Proc. 2023, 56, 312. https://doi.org/10.3390/ASEC2023-15360
Silva HM. A Simulation and Optimization Methodology Based on Reverse Engineering. Engineering Proceedings. 2023; 56(1):312. https://doi.org/10.3390/ASEC2023-15360
Chicago/Turabian StyleSilva, Hugo Miguel. 2023. "A Simulation and Optimization Methodology Based on Reverse Engineering" Engineering Proceedings 56, no. 1: 312. https://doi.org/10.3390/ASEC2023-15360
APA StyleSilva, H. M. (2023). A Simulation and Optimization Methodology Based on Reverse Engineering. Engineering Proceedings, 56(1), 312. https://doi.org/10.3390/ASEC2023-15360