Structural, Morphological and Mechanical Properties of Concrete Slab in Traditional Buildings in Casablanca, Morocco †
Abstract
:1. Introduction
2. Experimental Section
2.1. X-ray Diffraction Analysis (XRD)
2.2. Scanning Electron Microscopy (SEM) and Energy Dispersive X-rays (EDX)
2.3. Hydrostatic Balance Test
2.4. Sclerometer Test
2.5. Identification of Compressive and Flexural Strength
2.6. Identification of Elasticity Modulus
3. Results and Discussions
3.1. X-ray Diffraction Analysis
3.2. Scanning Electron Microscopy (SEM)
3.3. Apparent Density and Porosity Accessible to Water
3.4. Sclerometer Test
3.5. Compressive Strength
3.6. Elasticity Modulus
3.7. Flexural Tensile Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devi, C.; Vijayan, D.S.; Nagalingam, R.; Arvindan, S. A review of the implementations of glass fiber in concrete technology. Mater. Today Proc. 2022, 62, 2010–2015. [Google Scholar] [CrossRef]
- Karumanchi, M.; Bellum, R.R.; Chennupati, M.; Kunchala, V.; Regulagunta, M. Influence on mechanical properties of concrete of cement replacement with fly ash and river sand replacement with foundry sand. Mater. Today Proc. 2022, 65, 3547–3551. [Google Scholar] [CrossRef]
- Resende, M.M.; Gambare, E.B.; Silva, L.A.; de S. Cordeiro, Y.; Almeida, E.; Salvador, R.P. Infrared thermal imaging to inspect pathologies on façades of historical buildings: A case study on the Municipal Market of São Paulo, Brazil. Case Stud. Constr. Mater. 2022, 16, e01122. [Google Scholar] [CrossRef]
- Jia, H.; Qiao, G.; Han, P. Machine learning algorithms in the environmental corrosion evaluation of reinforced concrete structures—A review. Cem. Concr. Compos. 2022, 133, 104725. [Google Scholar] [CrossRef]
- Chen, C.; Xudong, C.; Xiaojing, L. Dynamic Compressive Behavior of 10-Year-Old Concrete Cores after Exposure to High Temperatures. J. Mater. Civ. Eng. 2020, 32, 4020076. [Google Scholar] [CrossRef]
- Sena-Cruz, J.; Ferreira, R.M.; Ramos, L.F.; Fernandes, F.; Miranda, T.; Castro, F. Luiz Bandeira Bridge: Assessment of a Historical Reinforced Concrete (RC) Bridge. Int. J. Archit. Herit. 2013, 7, 628–652. [Google Scholar] [CrossRef]
- Qazweeni, J.A.; Daoud, O.K. Concrete deterioration in a 20-year-old structure in Kuwait. Cem. Concr. Res. 1991, 21, 1155–1164. [Google Scholar] [CrossRef]
- Prassianakis, I.N.; Giokas, P. Mechanical properties of old concrete using destructive and ultrasonic non-destructive testing methods. Mag. Concr. Res. 2003, 55, 171–176. [Google Scholar] [CrossRef]
- Ambroziak, A.; Haustein, E.; Kondrat, J. Chemical and mechanical properties of 70-year-old concrete. J. Mater. Civ. Eng. 2019, 31, 4019159. [Google Scholar] [CrossRef]
- Gibas, K.; Glinicki, M.A.; Jóźwiak-Niedźwiedzka, D.; Dąbrowski, M.; Nowowiejski, G.; Gryziński, M. Properties of the Thirty Years Old Concrete in Unfinished Żarnowiec Nuclear Power Plant. Procedia Eng. 2015, 108, 124–130. [Google Scholar] [CrossRef]
- Ezairi, S.; Elouafi, A.; Lmai, F.; Tizliouine, A.; Elbachiri, A. Effect of cerium doping in tuning the optical and photoluminescence properties of TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 2023, 34, 1924. [Google Scholar] [CrossRef]
- Elouafi, A.; Ezairi, S.; Lmai, F.; Tizliouine, A. Excellent magnetocaloric effect at cryogenic temperature in amorphous (Fe35RE65) (RE = Er, Dy and Gd) alloys. J. Magn. Magn. Mater. 2023, 588, 171381. [Google Scholar] [CrossRef]
- Elouafi, A.; Ezairi, S.; Lmai, F.; Tizliouine, A. Structural, magnetic and magnetocaloric effect of pyrochlore iridate Er2Ir2O7. Phys. Scr. 2023, 98, 065803. [Google Scholar] [CrossRef]
- Rachid, F.Z.; Ouahbi, S.E.; Elouafi, A.; Lassri, H.; Fathi, A.; Tizliouine, A. Magnetic structure and magnetocaloric properties of SrGd2O4 prepared by solid-state method. Appl. Phys. A Mater. Sci. Process. 2022, 128, 1129. [Google Scholar] [CrossRef]
- Ounza, Y.; Moubah, R.; Oubla, M.; Elouafi, A.; Moutatouia, M.; Lamire, M.; Hlil, E.K.; Lassri, H. Transport-magnetism correlation in layered perovskite manganite LaCaBiMn2O7. Solid State Commun. 2022, 350, 114785. [Google Scholar] [CrossRef]
- El Oujihi, O.; Tizliouine, A.; Elouafi, A.; Salhi, H.; Omari, L.H. Magnetic and magnetocaloric properties of the double perovskite Sm-doped Ho2CoMnO6. Solid State Commun. 2022, 358, 114977. [Google Scholar] [CrossRef]
- El Oujihi, O.; Elouafi, A.; Tizliouine, A.; Omari, L.H.; Salhi, H. Spin wave, optical and electrical transport studies of double perovskite Ho2CoMnO6 nanoparticles. Solid State Commun. 2020, 322, 114079. [Google Scholar] [CrossRef]
- Elkhouad, S.; Yamkane, Z.; Louafi, J.; Moutataouia, M.; Omari, L.H.; Elouafi, A.; Moubah, R.; Lassri, H.; El Moussaoui, H. Structural, morphological and magnetic properties of Sr0,54Ca0,46Fe6,5Al5,5O19 M-type hexaferrites: Effects of annealing temperature. Solid State Commun. 2021, 337, 114453. [Google Scholar] [CrossRef]
- NF EN 1097-6:2001; Tests for Mechanical and Physical Properties of Aggregates—Part 6 : Determination of Particle Density and Water Absorption. AFNOR: La Plaine Saint-Denis, France, 2001.
- Šimonová, H.; Daněk, P.; Frantík, P.; Keršner, Z.; Veselý, V. Tentative Characterization of Old Structural Concrete through Mechanical Fracture Parameters. Procedia Eng. 2017, 190, 414–418. [Google Scholar] [CrossRef]
- EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. CEN: Brussels, Belgium, 2016.
- EN 12390-13: 2013; Testing Hardened Concrete—Part 13: Determination of Secant Modulus of Elasticity in Compression. CEN: Brussels, Belgium, 2013.
- Noufid, A.; Hidar, N.; Belattar, S.; Elafi, M.; Feddaoui, M. Valorization of polypropylene fibers to improve the physical and mechanical properties of concrete and mortars. Res. Sq. 2022, 1–23. [Google Scholar] [CrossRef]
- Bheel, N.; Mahro, S.K.; Adesina, A. Influence of coconut shell ash on workability, mechanical properties, and embodied carbon of concrete. Environ. Sci. Pollut. Res. 2021, 28, 5682–5692. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.K.U.; Ibrahim, Z.; Memon, S.A.; Jameel, M. Nondestructive test methods for concrete bridges: A review. Constr. Build. Mater. 2016, 107, 58–86. [Google Scholar] [CrossRef]
- Escalante-García, G.M.-S.J.I.; Fuentes, A.F.; Gorokhovsky, A.; Fraire-Luna, P.E. Hydration Products and Reactivity of Blast Furnace Slag Activated by Various Alkalis. J. Am. Ceram. Soc. 2003, 86, 2148–2153. [Google Scholar] [CrossRef]
- Bekdaş, G.; Sayin, B.; Çelik Sola, Ö.; Güner, A. Assessment of the material quality of damaged structures after earthquake in Van, Turkey. J. Mater. Civ. Eng. 2016, 28, 04016110. [Google Scholar] [CrossRef]
- Lo, F.-C.; Lo, S.-L.; Lee, M.-G. Effect of partially replacing ordinary Portland cement with municipal solid waste incinerator ashes and rice husk ashes on pervious concrete quality. Environ. Sci. Pollut. Res. 2020, 27, 23742–23760. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, Q.; Zhang, M. Water absorption behaviour of concrete: Novel experimental findings and model characterization. J. Build. Eng. 2022, 53, 104602. [Google Scholar] [CrossRef]
- Kancharla, R.; Maddumala, V.R.; Prasanna, T.V.N.; Pullagura, L.; Mukiri, R.R.; Prakash, M.V. Flexural Behavior Performance of Reinforced Concrete Slabs Mixed with Nano- and Microsilica. J. Nanomater. 2021, 2021, 1754325. [Google Scholar] [CrossRef]
- Kaplan, G.; Gulcan, A.; Cagdas, B.; Bayraktar, O.Y. The impact of recycled coarse aggregates obtained from waste concretes on lightweight pervious concrete properties. Environ. Sci. Pollut. Res. 2021, 28, 17369–17394. [Google Scholar] [CrossRef]
- Tobón, J.I.; Paya, J.; Borrachero, M.V.; Soriano, L.; Restrepo, O.J. Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials. J. Therm. Anal. Calorim. 2012, 107, 233–239. [Google Scholar] [CrossRef]
- Alemu, A.S.; Yoon, J.; Tafesse, M.; Seo, Y.-S.; Kim, H.-K.; Pyo, S. Practical considerations of porosity, strength, and acoustic absorption of structural pervious concrete. Case Stud. Constr. Mater. 2021, 15, e00764. [Google Scholar] [CrossRef]
- Choi, S.-H.; Hwang, J.-H.; Han, S.-J.; Cho, H.-C.; Kim, J.H.; Kim, K.S. Simplified Effective Compressive Strengths of Columns with Intervening Floor Slabs. Int. J. Concr. Struct. Mater. 2020, 14, 42. [Google Scholar] [CrossRef]
- Hanchak, S.J.; Forrestal, M.J.; Young, E.R.; Ehrgott, J.Q. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths. Int. J. Impact Eng. 1992, 12, 1–7. [Google Scholar] [CrossRef]
Samples | Dry Mass Md (g) | Density × 106 (g/cm3) | Absorption by Mass (%) |
---|---|---|---|
CB1 | 7468.5 | 1.6428 | 6.76 |
CB2 | 8412.5 | 1.5809 | 8.43 |
CB3 | 8344.3 | 1.5034 | 7.55 |
CB4 | 7645.5 | 1.5383 | 9.63 |
Samples | Young Module (Mpa) | Compression Strength (MPa) | Flexion Strength (MPa) |
---|---|---|---|
CB1 | 15.2 | 27.6 | 4.5 |
CB2 | 6.4 | 16.3 | 3.2 |
CB3 | 13.1 | 17.2 | 3.5 |
CB4 | 5.7 | 12.3 | 2.7 |
Samples | Standard Deviation (Mpa) | Compression Resistance Sclerometer (MPa) |
---|---|---|
Column 1 | 1.4 | 6.3 |
Column 2 | 1.4 | 5.3 |
Beam 1 | 2.8 | 15.9 |
Beam 2 | 1.6 | 21.3 |
CB1 | 1.2 | 27.5 |
CB2 | 1.2 | 16.5 |
CB3 | 1.3 | 26.3 |
CB4 | 1.4 | 12.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soumadrass, H.; Beidouri, Z.; Zarbane, K. Structural, Morphological and Mechanical Properties of Concrete Slab in Traditional Buildings in Casablanca, Morocco. Eng. Proc. 2023, 56, 63. https://doi.org/10.3390/ASEC2023-15262
Soumadrass H, Beidouri Z, Zarbane K. Structural, Morphological and Mechanical Properties of Concrete Slab in Traditional Buildings in Casablanca, Morocco. Engineering Proceedings. 2023; 56(1):63. https://doi.org/10.3390/ASEC2023-15262
Chicago/Turabian StyleSoumadrass, H., Z. Beidouri, and Kh. Zarbane. 2023. "Structural, Morphological and Mechanical Properties of Concrete Slab in Traditional Buildings in Casablanca, Morocco" Engineering Proceedings 56, no. 1: 63. https://doi.org/10.3390/ASEC2023-15262
APA StyleSoumadrass, H., Beidouri, Z., & Zarbane, K. (2023). Structural, Morphological and Mechanical Properties of Concrete Slab in Traditional Buildings in Casablanca, Morocco. Engineering Proceedings, 56(1), 63. https://doi.org/10.3390/ASEC2023-15262