Current Advances in the Synthesis of CD-MOFs and Their Water Stability †
Abstract
:1. Introduction
2. Synthesis Strategies for CD-MOFs
2.1. Vapor Diffusion/Slow Evaporation Method
2.2. Solvothermal/Hydrothermal Method
2.3. Microwave-Assisted Method
2.4. Ultrasound-Assisted Method
3. Water Stability of Metal–Organic Frameworks
3.1. Thermodynamic Stability
3.2. Kinetic Stability
4. Degradation Mechanism of MOFs in Water
5. Current Strategies to Protect CD-MOFs from Water
6. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Ghamdi, S.; Kathuria, A.; Abiad, M.; Auras, R. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde. J. Cryst. Growth 2016, 451, 72–78. [Google Scholar] [CrossRef]
- Forgan, R.S.; Smaldone, R.A.; Gassensmith, J.J.; Furukawa, H.; Cordes, D.B.; Li, Q.; Wilmer, C.E.; Botros, Y.Y.; Snurr, R.Q.; Slawin, A.M.; et al. Nanoporous carbohydrate metal-organic frameworks. J. Am. Chem. Soc. 2012, 134, 406–417. [Google Scholar] [CrossRef]
- Liu, Z.; Stoddart, J.F. Extended metal-carbohydrate frameworks. Pure Appl. Chem. 2014, 86, 1323–1334. [Google Scholar] [CrossRef]
- Smaldone, R.A.; Forgan, R.S.; Furukawa, H.; Gassensmith, J.J.; Slawin, A.M.; Yaghi, O.M.; Stoddart, J.F. Metal-organic frameworks from edible natural products. Angew. Chem. Int. Ed Engl. 2010, 49, 8630–8634. [Google Scholar] [CrossRef]
- Roy, I.; Stoddart, J.F. Cyclodextrin Metal-Organic Frameworks and Their Applications. Acc. Chem. Res. 2021, 54, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.A.; Islamoglu, T.; Liu, Z.; Nalluri, S.K.M.; Samanta, A.; Anamimoghadam, O.; Malliakas, C.D.; Farha, O.K.; Stoddart, J.F. Noninvasive Substitution of K+ Sites in Cyclodextrin Metal-Organic Frameworks by Li+ Ions. J. Am. Chem. Soc. 2017, 139, 11020–11023. [Google Scholar] [CrossRef] [PubMed]
- Krukle-Berzina, K.; Belyakov, S.; Mishnev, A.; Shubin, K. Crystal structure of a two-dimensional metal-organic framework assembled from lithium(I) and γ-cyclodextrin. Acta Crystallogr. Sect. E Crystallogr. Commun. 2020, 76, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, H.; Xu, X.; Li, X.; Lv, N.; Singh, V.; Stoddart, J.F.; York, P.; Xu, X.; Gref, R.; et al. Optimized synthesis and crystalline stability of gamma-cyclodextrin metal-organic frameworks for drug adsorption. Int. J. Pharm. 2016, 514, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, Y.; Ishiwata, T.; Sugikawa, K.; Kokado, K.; Sada, K. Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks. Angew. Chem. Int. Ed. Engl. 2012, 51, 10566–10569. [Google Scholar] [CrossRef]
- Gassensmith, J.J.; Smaldone, R.A.; Forgan, R.S.; Wilmer, C.E.; Cordes, D.B.; Botros, Y.Y.; Slawin, A.M.; Snurr, R.Q.; Stoddart, J.F. Polyporous metal-coordination frameworks. Org. Lett. 2012, 14, 1460–1463. [Google Scholar] [CrossRef]
- Sha, J.-Q.; Zhong, X.-H.; Wu, L.-H.; Liu, G.-D.; Sheng, N. Nontoxic and renewable metal–organic framework based on α-cyclodextrin with efficient drug delivery. RSC Adv. 2016, 6, 82977–82983. [Google Scholar] [CrossRef]
- Sha, J.; Yang, X.; Sun, L.; Zhang, X.; Li, S.; Li, J.; Sheng, N. Unprecedented α-cyclodextrin metal-organic frameworks with chirality: Structure and drug adsorptions. Polyhedron 2017, 127, 396–402. [Google Scholar] [CrossRef]
- Wang, L.; Liang, X.Y.; Chang, Z.Y.; Ding, L.S.; Zhang, S.; Li, B.J. Effective Formaldehyde Capture by Green Cyclodextrin-Based Metal-Organic Framework. ACS Appl. Mater. Interfaces 2018, 10, 42–46. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, J.; Qin, Y.; Fan, H.; Xu, X.; Jin, Z. Green Synthesis of Cyclodextrin-Based Metal-Organic Frameworks through the Seed-Mediated Method for the Encapsulation of Hydrophobic Molecules. J. Agric. Food Chem. 2018, 66, 4244–4250. [Google Scholar] [CrossRef] [PubMed]
- Hartlieb, K.J.; Peters, A.W.; Wang, T.C.; Deria, P.; Farha, O.K.; Hupp, J.T.; Stoddart, J.F. Functionalised cyclodextrin-based metal-organic frameworks. Chem. Commun. 2017, 53, 7561–7564. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Rodríguez-Hermida, S.; Pérez-Carvajal, J.; Juanhuix, J.; Imaz, I.; Maspoch, D. A First Cyclodextrin-Transition Metal Coordination Polymer. Cryst. Growth Des. 2016, 16, 5598–5602. [Google Scholar] [CrossRef]
- Abucafy, M.P.; Caetano, B.L.; Chiari-Andreo, B.G.; Fonseca-Santos, B.; Santos, A.M.D.; Chorilli, M.; Chiavacci, L.A. Supramolecular cyclodextrin-based metal-organic frameworks as efficient carrier for anti-inflammatory drugs. Eur. J. Pharm. Biopharm. 2018, 127, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Koshevoy, E.I.; Samsonenko, D.G.; Berezin, A.S.; Fedin, V.P. Metal-Organic Coordination Polymers Formed from γ-Cyclodextrin and Divalent Metal Ions. Eur. J. Inorg. Chem. 2019, 2019, 4321–4327. [Google Scholar] [CrossRef]
- Rajkumar, T.; Kukkar, D.; Kim, K.-H.; Sohn, J.R.; Deep, A. Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications. J. Ind. Eng. Chem. 2019, 72, 50–66. [Google Scholar] [CrossRef]
- Lu, H.; Yang, X.; Li, S.; Zhang, Y.; Sha, J.; Li, C.; Sun, J. Study on a new cyclodextrin based metal–organic framework with chiral helices. Inorg. Chem. Commun. 2015, 61, 48–52. [Google Scholar] [CrossRef]
- Liu, J.; Bao, T.Y.; Yang, X.Y.; Zhu, P.P.; Wu, L.H.; Sha, J.Q.; Zhang, L.; Dong, L.Z.; Cao, X.L.; Lan, Y.Q. Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery. Chem. Commun. 2017, 53, 7804–7807. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Sun, D.; Yuan, D.; Liu, Y.; Zhao, Y.; Li, X.; Wang, S.; Dou, J.; Wang, X.; Hao, A.; et al. Pb(ii) metal–organic nanotubes based on cyclodextrins: Biphasic synthesis, structures and properties. Chem. Sci. 2012, 3, 2282–2287. [Google Scholar] [CrossRef]
- Liu, B.; He, Y.; Han, L.; Singh, V.; Xu, X.; Guo, T.; Meng, F.; Xu, X.; York, P.; Liu, Z.; et al. Microwave-Assisted Rapid Synthesis of γ-Cyclodextrin Metal–Organic Frameworks for Size Control and Efficient Drug Loading. Cryst. Growth Des. 2017, 17, 1654–1660. [Google Scholar] [CrossRef]
- Hajra, S.; Sahu, M.; Padhan, A.M.; Lee, I.S.; Yi, D.K.; Alagarsamy, P.; Nanda, S.S.; Kim, H.J. A Green Metal–Organic Framework-Cyclodextrin MOF: A Novel Multifunctional Material Based Triboelectric Nanogenerator for Highly Efficient Mechanical Energy Harvesting. Adv. Funct. Mater. 2021, 31, 2101829. [Google Scholar] [CrossRef]
- Burtch, N.C.; Jasuja, H.; Walton, K.S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612. [Google Scholar] [CrossRef]
- Ding, M.; Cai, X.; Jiang, H.L. Improving MOF stability: Approaches and applications. Chem. Sci. 2019, 10, 10209–10230. [Google Scholar] [CrossRef]
- Feng, L.; Wang, K.Y.; Day, G.S.; Ryder, M.R.; Zhou, H.C. Destruction of Metal-Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chem. Rev. 2020, 120, 13087–13133. [Google Scholar] [CrossRef]
- Singh, V.; Guo, T.; Wu, L.; Xu, J.; Liu, B.; Gref, R.; Zhang, J. Template-directed synthesis of a cubic cyclodextrin polymer with aligned channels and enhanced drug payload. RSC Adv. 2017, 7, 20789–20794. [Google Scholar] [CrossRef]
- Li, H.; Hill, M.R.; Huang, R.; Doblin, C.; Lim, S.; Hill, A.J.; Babarao, R.; Falcaro, P. Facile stabilization of cyclodextrin metal-organic frameworks under aqueous conditions via the incorporation of C60 in their matrices. Chem. Commun. 2016, 52, 5973–5976. [Google Scholar] [CrossRef]
- Singh, V.; Guo, T.; Xu, H.; Wu, L.; Gu, J.; Wu, C.; Gref, R.; Zhang, J. Moisture resistant and biofriendly CD-MOF nanoparticles obtained: Via cholesterol shielding. Chem. Commun. 2017, 53, 9246–9249. [Google Scholar] [CrossRef] [PubMed]
- Ke, D.; Feng, J.F.; Wu, D.; Hou, J.B.; Zhang, X.Q.; Li, B.J.; Zhang, S. Facile stabilization of a cyclodextrin metal-organic framework under humid environment: Via hydrogen sulfide treatment. RSC Adv. 2019, 9, 18271–18276. [Google Scholar] [CrossRef]
- Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 2016, 1, 15018. [Google Scholar] [CrossRef]
- Marshall, R.J.; Forgan, R.S. Postsynthetic Modification of Zirconium Metal-Organic Frameworks. Eur. J. Inorg. Chem. 2016, 2016, 4310–4331. [Google Scholar] [CrossRef]
- Younas, M.; Rezakazemi, M.; Daud, M.; Wazir, M.B.; Ahmad, S.; Ullah, N.; Ramakrishna, S. Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Prog. Energy Combust. Sci. 2020, 80, 100849. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, J.; Ju, M.; Chen, X.; Xu, J.; Wang, Z.; Meng, L.; Zhao, P.; Wang, H. Construction of new alternative transmission sites by incorporating structure-defect metal-organic framework into sulfonated poly(arylene ether ketone sulfone)s. Int. J. Hydrogen Energy 2021, 46, 27193–27206. [Google Scholar] [CrossRef]
- Zhong, G.; Liu, D.; Zhang, J. Incorporation of Functional Groups Expands the Applications of UiO-67 for Adsorption, Catalysis and Thiols Detection. ChemistrySelect 2018, 3, 7066–7080. [Google Scholar] [CrossRef]
- Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; et al. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30, e1704303. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez, E.C.R.; Perez, J.V.D. Current Advances in the Synthesis of CD-MOFs and Their Water Stability. Eng. Proc. 2023, 56, 72. https://doi.org/10.3390/ASEC2023-15373
Lopez ECR, Perez JVD. Current Advances in the Synthesis of CD-MOFs and Their Water Stability. Engineering Proceedings. 2023; 56(1):72. https://doi.org/10.3390/ASEC2023-15373
Chicago/Turabian StyleLopez, Edgar Clyde R., and Jem Valerie D. Perez. 2023. "Current Advances in the Synthesis of CD-MOFs and Their Water Stability" Engineering Proceedings 56, no. 1: 72. https://doi.org/10.3390/ASEC2023-15373
APA StyleLopez, E. C. R., & Perez, J. V. D. (2023). Current Advances in the Synthesis of CD-MOFs and Their Water Stability. Engineering Proceedings, 56(1), 72. https://doi.org/10.3390/ASEC2023-15373