Room Temperature Electrical Analysis of Pr3+-Doped Silicate Glasses for Energy Storage Applications †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dielectric Studies
3.2. Electrical Conductivity Studies
3.3. Impedance Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gandi, S.; Vaddadi, V.S.C.S.; Panda, S.S.S.; Goona, N.K.; Parne, S.R.; Lakavat, M.; Bhaumik, A. Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: A review. J. Power Source 2022, 521, 230930. [Google Scholar] [CrossRef]
- Nagao, K.; Shigeno, M.; Inoue, A.; Deguchi, M.; Kowada, H.; Hotehama, C.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Lithium-ion conductivity and crystallization temperature of multicomponent oxide glass electrolytes. J. Non-Cryst. Solids X 2022, 14, 100089. [Google Scholar] [CrossRef]
- Prasad, V.; Pavić, L.; Moguš-Milanković, A.; Reddy, A.S.S.; Gandhi, Y.; Kumar, V.R.; Raju, G.N.; Veeraiah, N. Influence of silver ion concentration on dielectric characteristics of Li2O-Nb2O5-P2O5 glasses. J. Alloys Compd. 2019, 773, 654–665. [Google Scholar] [CrossRef]
- Rathan, S.V.; Govindaraj, G. Thermal and electrical relaxation studies in Li(4+x)TixNb1−xP3O12 (0.0 ≤ x ≤ 1.0) phosphate glasses. Solid State Sci. 2010, 12, 730–735. [Google Scholar] [CrossRef]
- Prabhu, N.S.; Vighnesh, K.; Bhardwaj, S.; Awasthi, A.; Lakshminarayana, G.; Kamath, S.D. Correlative exploration of structural and dielectric properties with Er2O3 addition in BaO–ZnO–LiF–B2O3 glasses. J. Alloys Compd. 2020, 832, 154996. [Google Scholar] [CrossRef]
- Gracie, P.J.; Geetha, D.; Battisha, I.K. Multifunctional praseodymium-doped composite silica glasses for UV shielding and photonic applications. J. Phys. Appl. Phys. 2023, 56, 195301. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Badr, A.M.; Elshaikh, H.A.; Mostafa, A.G.; Elbashar, Y.H. Effect of CuO-addition on the Dielectric Parameters of Sodium Zinc Phosphate Glasses. Silicon 2018, 10, 1265–1274. [Google Scholar] [CrossRef]
- Punia, R.; Dahiya, S.; Murugavel, S.; Kishore, N.; Tandon, R. Understanding the electrode polarization in bismuth zinc vanadate semiconducting glasses from dielectric spectroscopy: A new insight on electrode polarization effect. J. Non-Cryst. Solids 2021, 574, 121174. [Google Scholar] [CrossRef]
- Devaraja, C.; Gowda, G.V.J.; Eraiah, B.; Talwar, A.M.; Dahshan, A.; Nazrin, S. Structural, conductivity and dielectric properties of europium trioxide doped lead boro-tellurite glasses. J. Alloys Compd. 2022, 898, 162967. [Google Scholar] [CrossRef]
- Gracie, P.; Geetha, D. Nano cristobalite embedded Er3+ doped multi-functional silica phosphate composite glasses for optoelectronic applications. Ceram. Int. 2023, 49, 25848–25867. [Google Scholar] [CrossRef]
- Barde, R.; Nemade, K.; Waghuley, S. Impedance spectroscopy study of the AC conductivity of sodium superoxide nanoparticles doped vanadate based glasses. Mater. Sci. Energy Technol. 2021, 4, 202–207. [Google Scholar] [CrossRef]
- Monisha, M.; Prabhu, N.S.; D’Souza, A.N.; Bharadwaj, S.; Chowdary, R.; Sayyed, M.; Alhuthali, A.M.; Al-Hadeethi, Y.; Kamath, S.D. Structural, dielectric, optical and photoluminescence studies of Tm3+ doped B2O3-BaO-MgO-Li2O-Na2O-LiF glasses featuring strong blue emission. J. Non-Cryst. Solids 2021, 560, 120733. [Google Scholar] [CrossRef]
- Malik, M.; Dagar, S.; Hooda, A.; Agarwal, A.; Khasa, S. Effect of magnetic ion, Fe3+ on the structural and dielectric properties of Oxychloro Bismuth Borate Glasses. Solid State Sci. 2020, 110, 106491. [Google Scholar] [CrossRef]
- Hanumantharaju, N.; Nayaka, R.; Nagendra, K.; Gowda, V.V.; Jayasheelan, A.; Pasha, K.S. Li2SO4 doped Li2O + B2O3 glasses: Hopping mechanism, relaxation phenomena and conductivity behavior. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
Parameters/ Sample Code | Hopping Frequency ωp (kHz) | Frequency Exponent (s) | ϵ′ (at 1 kHz) | σAC (×10−5 S/cm) at 107 Hz | Bulk Resistance (MΩ) | σDC (×10−6 S/cm) |
---|---|---|---|---|---|---|
0P | 0.70 | 0.7828 | 18.506 | 0.905 | 2.659 | 0.0283 |
0.5P | 1.03 | 0.7409 | 30.202 | 1.18 | 1.311 | 0.0575 |
1P | 2.25 | 0.6351 | 89.160 | 2.91 | 0.239 | 0.3161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeyakumar, G.P.; Jamil, Y.; Deivasigamani, G. Room Temperature Electrical Analysis of Pr3+-Doped Silicate Glasses for Energy Storage Applications. Eng. Proc. 2023, 56, 76. https://doi.org/10.3390/ASEC2023-15308
Jeyakumar GP, Jamil Y, Deivasigamani G. Room Temperature Electrical Analysis of Pr3+-Doped Silicate Glasses for Energy Storage Applications. Engineering Proceedings. 2023; 56(1):76. https://doi.org/10.3390/ASEC2023-15308
Chicago/Turabian StyleJeyakumar, Gracie. P., Yasmin Jamil, and Geetha Deivasigamani. 2023. "Room Temperature Electrical Analysis of Pr3+-Doped Silicate Glasses for Energy Storage Applications" Engineering Proceedings 56, no. 1: 76. https://doi.org/10.3390/ASEC2023-15308
APA StyleJeyakumar, G. P., Jamil, Y., & Deivasigamani, G. (2023). Room Temperature Electrical Analysis of Pr3+-Doped Silicate Glasses for Energy Storage Applications. Engineering Proceedings, 56(1), 76. https://doi.org/10.3390/ASEC2023-15308