Unbundling SWCNT Mechanically via Nanomanipulation Using AFM †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SWCNT Thin-Film Samples
2.3. AFM Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alkallas, F.H.; Alghamdi, S.M.; Rashed, E.A.; Trabelsi, A.B.G.; Nafee, S.S.; Elsharkawy, W.B.; Alsubhe, E.; Alshreef, S.H.; Mostafa, A.M. Nanocomposite Fe3O4-MWCNTs based on femtosecond pulsed laser ablation for catalytic degradation. Diam. Relat. Mater. 2023, 140, 110445. [Google Scholar] [CrossRef]
- Alrebdi, T.A.; Ahmed, H.A.; Alkallas, F.H.; Mwafy, E.A.; Trabelsi, A.B.G.; Mostafa, A.M. Structural, linear and nonlinear optical properties of NiO nanoparticles–multi-walled carbon nanotubes nanocomposite for optoelectronic applications. Radiat. Phys. Chem. 2022, 195, 110088. [Google Scholar] [CrossRef]
- Al-Kadhi, N.S.; Pashameah, R.A.; Ahmed, H.A.; Alrefaee, S.H.; Alamro, F.S.; Faqih, H.H.; Mwafy, E.A.; Mostafa, A.M. Preparation of NiO/MWCNTs nanocomposite for the removal of cadmium ions. J. Mater. Res. Technol. 2022, 19, 1961–1971. [Google Scholar] [CrossRef]
- Altowyan, A.S.; Toghan, A.; Ahmed, H.A.; Pashameah, R.A.; Mwafy, E.A.; Alrefaee, S.H.; Mostafa, A.M. Removal of methylene blue dye from aqueous solution using carbon nanotubes decorated by nickel oxide nanoparticles via pulsed laser ablation method. Radiat. Phys. Chem. 2022, 198, 110268. [Google Scholar] [CrossRef]
- Alamro, F.S.; Mostafa, A.M.; Ahmed, H.A.; Toghan, A. Zinc oxide/carbon nanotubes nanocomposite: Synthesis, characterization and catalytic reduction of 4-nitrophenol via laser assistant method. Surf. Interfaces 2021, 26, 101406. [Google Scholar] [CrossRef]
- Alamro, F.S.; Mostafa, A.M.; Abu Al-Ola, K.A.; Ahmed, H.A.; Toghan, A. Synthesis of Ag Nanoparticles-Decorated CNTs via Laser Ablation Method for the Enhancement the Photocatalytic Removal of Naphthalene from Water. Nanomaterials 2021, 11, 2142. [Google Scholar] [CrossRef]
- Mwafy, E.A.; Gaafar, M.S.; Mostafa, A.M.; Marzouk, S.Y.; Mahmoud, I.S. Novel laser-assisted method for synthesis of SnO2/MWCNTs nanocomposite for water treatment from Cu (II). Diam. Relat. Mater. 2021, 113, 108287. [Google Scholar] [CrossRef]
- Mwafy, E.A.; Mostafa, A.M. Tailored MWCNTs/SnO2 decorated cellulose nanofiber adsorbent for the removal of Cu (II) from waste water. Radiat. Phys. Chem. 2020, 177, 109172. [Google Scholar] [CrossRef]
- Mwafy, E.A.; Mostafa, A.M.; Awwad, N.S.; Ibrahium, H.A. Catalytic activity of multi-walled carbon nanotubes decorated with tungsten trioxides nanoparticles against 4-nitrophenol. J. Phys. Chem. Solids 2021, 158, 110252. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Jeon, I.; Chiba, T.; Shawky, A.; Xiang, R.; Kauppinen, E.I.; Chiashi, S.; Park, N.-G.; Matsuo, Y.; Maruyama, S. Non-Doped and Unsorted Single-Walled Carbon Nanotubes as Carrier-Selective, Transparent and Conductive Electrode for Perovskite Solar Cells. MRS Commun. 2018, 8, 1058–1063. [Google Scholar] [CrossRef]
- Jeon, I.; Xiang, R.; Shawky, A.; Matsuo, Y.; Maruyama, M. Single-Walled Carbon Nanotubes in Emerging Solar Cells: Synthesis and Electrode Applications. Adv. Energy Mater. 2019, 9, 1801312. [Google Scholar] [CrossRef]
- Jeon, I.; Shawky, A.; Lin, H.S.; Seo, S.; Okada, H.; Lee, J.-W.; Pal, A.; Tan, S.; Anisimov, A.; Kauppinen, E.I.; et al. Controlled Redox of Lithium-ion Endohedral Fullerene for Efficient and Stable Metal Electrode-Free Perovskite Solar Cells. J. Am. Chem. Soc. 2019, 141, 16553–16558. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Seo, S.; Jeon, I.; Lin, H.; Okawa, S.; Zheng, Y.; Shawky, A.; Anisimov, A.; Kauppinen, E.I.; Kong, J.; et al. MoS2-carbon nanotube heterostructure as efficient hole transporters and conductors in perovskite solar cells. Appl. Phys. Express 2020, 13, 075009. [Google Scholar] [CrossRef]
- Lee, C.; Lee, S.-W.; Bae, S.; Shawky, A.; Devaraj, V.; Anisimov, A.; Kauppinen, E.I.; Oh, J.W.; Kang, Y.; Kim, D.; et al. Carbon Nanotube Electrode-Based Perovskite–Silicon Tandem Solar Cells. Sol. RRL 2020, 4, 2000353. [Google Scholar] [CrossRef]
- Shawky, A.; Nam, J.-S.; Kim, K.; Han, J.; Yoon, J.; Seo, S.; Lee, C.S.; Xiang, R.; Matsuo, Y.; Lee, H.M.; et al. Controlled Removal of Surfactants from Double-Walled Carbon Nanotubes for Stronger p-Doping Effect and its Demonstration in Perovskite Solar Cells. Small Methods 2021, 5, 2100080. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Akino, K.; Nam, J.-S.; Shawky, A.; Lin, H.-S.; Nagaya, H.; Kauppinen, E.I.; Xiang, R.; Matsuo, Y.; Jeon, I.; et al. Multi-Functional MoO3 Doping of Carbon-Nanotube Top Electrodes for Highly Transparent and Efficient Semi-Transparent Perovskite Solar Cells. Adv. Mater. Interfaces 2022, 9, 2101595. [Google Scholar] [CrossRef]
- Talyzin, A.V.; Luzan, S.; Anoshkin, I.V.; Nasibulin, A.G.; Kauppinnen, E.I.; Dzwilewski, A.; Kreta, A.; Jamnik, J.; Hassanien, A.; Lundstedt, A.; et al. Hydrogen-driven cage unzipping of C60 into nano-graphenes. J. Phys. Chem. C 2014, 118, 6504–6513. [Google Scholar] [CrossRef]
- Kreta, A.; Pavlica, E.; Božič, M.; Bratina, G. Nanoscopic Roughness Characterization of Chitosan with Buried Graphene Oxide for Fuel Cell Application. Eng. Proc. 2023, 31, 26. [Google Scholar] [CrossRef]
- Kreta, A.; Gaberšček, M.; Muševič, I. Time-resolved in situ electrochemical atomic force microscopy imaging of the corrosion dynamics of AA2024-T3 using a new design of cell. J. Mater. Res. 2021, 36, 79–93. [Google Scholar] [CrossRef]
- Surca, A.K.; Kreta, A.; Mihelčič, M.; Gaberscek, M.; Rodošek, M. Benefits of Coupling of Electrochemical Technique with Either IR, Raman or AFM Technique in the Corrosion Investigation. ECS Meet. Abstr. 2017, MA2017-01, 939. [Google Scholar] [CrossRef]
- Surca, A.K.; Rodošek, M.; Kreta, A.; Mihelčič, M. Application of ex situ IR reflection-absorption, in situ Raman and in situ electrochemical AFM in the study of sol-gel protective coatings. In Proceedings of the EUROCORR 2017—The Annual Congress of the European Federation of Corrosion, 20th International Corrosion Congress and Process Safety Congress 2017, Prague, Czech Republic, 3–7 September 2017. [Google Scholar]
- Surca, A.K.; Rodošek, M.; Kreta, A.; Mihelčič, M.; Gaberšček, M. In situ and ex situ electrochemical measurements: Spectroelectrochemistry and atomic force microscopy. In Hybrid Organic-Inorganic Interfaces: Towards Advanced Functional Materials; Delville, M.-H., Ed.; Wiley-VCH: Hoboken, NJ, USA, 2018; pp. 793–837. [Google Scholar]
- Kreta, A. Nanoscopic Study of Corrosion Dynamics and Properties of Anticorrosion Coatings on Copper and Aluminium Alloys = Nanoskopska Študija Korozijske Dinamike in Lastnosti Protikorozijskih Prevlek na bakru in Aluminijevih Zlitinah. Ph.D. Thesis, Mednarodna Podiplomska šola Jožefa Stefana, Ljubljana, Slovenia, 2017. [Google Scholar] [CrossRef]
- Kaker, B.; Hribernik, S.; Mohan, T.; Kargl, R.; Kleinschek, K.S.; Pavlica, E.; Kreta, A.; Bratina, G.; Lue, S.J.; Božič, M. Novel Chitosan-Mg(OH)2-Based Nanocomposite Membranes for Direct Alkaline Ethanol Fuel Cells. ACS Sustain. Chem. Eng. 2019, 7, 19356–19368. [Google Scholar] [CrossRef]
- Kreta, A.; Hočevar, S.B. An In Situ AFM Study of Electrochemical Bismuth Film Deposition on a Glassy Carbon Substrate Electrode Using a Low Concentration of Bismuth Ions. Eng. Proc. 2023, 31, 27. [Google Scholar] [CrossRef]
- Kashiwase, Y.; Ikeda, T.; Oya, T.; Ogino, T. Manipulation and soldering of carbon nanotubes using atomic force microscope. Appl. Surf. Sci. 2008, 254, 7897–7900. [Google Scholar] [CrossRef]
- Ju, D.; Zhang, Y.; Li, R.; Liu, S.; Li, L.; Chen, H. Mechanism-independent manipulation of single-wall carbon nanotubes with atomic force microscopy tip. Nanomaterials 2020, 10, 1494. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.C.; Qian, X. Controlled manipulation of flexible carbon nanotubes through shape-dependent pushing by atomic force microscopy. Langmuir 2013, 29, 11793–11801. [Google Scholar] [CrossRef] [PubMed]
- Hertel, T.; Martel, R.; Avouris, P. Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B 1998, 102, 910–915. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kreta, A.; Swillam, M.A.; Guirguis, A.; Hassanien, A. Unbundling SWCNT Mechanically via Nanomanipulation Using AFM. Eng. Proc. 2023, 56, 83. https://doi.org/10.3390/ASEC2023-15346
Kreta A, Swillam MA, Guirguis A, Hassanien A. Unbundling SWCNT Mechanically via Nanomanipulation Using AFM. Engineering Proceedings. 2023; 56(1):83. https://doi.org/10.3390/ASEC2023-15346
Chicago/Turabian StyleKreta, Ahmed, Mohamed A. Swillam, Albert Guirguis, and Abdou Hassanien. 2023. "Unbundling SWCNT Mechanically via Nanomanipulation Using AFM" Engineering Proceedings 56, no. 1: 83. https://doi.org/10.3390/ASEC2023-15346
APA StyleKreta, A., Swillam, M. A., Guirguis, A., & Hassanien, A. (2023). Unbundling SWCNT Mechanically via Nanomanipulation Using AFM. Engineering Proceedings, 56(1), 83. https://doi.org/10.3390/ASEC2023-15346