Modeling and Numerical Simulation of a CH3NH3SnI3 Perovskite Solar Cell Using the SCAPS1-D Simulator †
Abstract
:1. Introduction
2. Device Simulation Parameters
3. Results and Discussion
3.1. Performance of Optimized Parameters
3.2. The Effect of Temperature on Solar Cell Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabhi, S. Etat de l’ Art Des Couches Minces à Base Pérovskite Pour Des Applications Photovoltaïques Présenté Par. Master’s Thesis, University of Constantine, Constantine, Algeria, 2015. [Google Scholar]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Graetzel, M.; Malinkiewicz, O.; Yella, A.; Lee, Y.H.; Mı, G.; Nazeeruddin, M.K.; Bolink, H.J. Perovskite Solar Cells Employing Organic Charge-Transport Layers. Nat. Photonics 2014, 8, 128–132. [Google Scholar] [CrossRef]
- Zh, O.; Yerezhep, D.; Aldiyarov, A.; Golikov, O.; Tokmoldin, N. Performance Simulation of Eco-Friendly Solar Cells Based on CH3NH3SnI3. Eurasian Phys. Tech. J. 2022, 19, 58–64. [Google Scholar] [CrossRef]
- Deepthi Jayan, K.; Sebastian, V. Comprehensive Device Modelling and Performance Analysis of MASnI3 Based Perovskite Solar Cells with Diverse ETM, HTM and Back Metal Contacts. Sol. Energy 2021, 217, 40–48. [Google Scholar] [CrossRef]
- Rawat, S.; Shrivastav, N.; Madan, J. Analysis and Optimization of MASnPbI3-Based Single Junction Solar Cells for High Power Conversion Efficiency. In Proceedings of the 2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Trichirappalli, India, 5–7 April 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Shankar, G.; Kumar, P.; Pradhan, B. All-Perovskite Two-Terminal Tandem Solar Cell with 32.3% Efficiency by Numerical Simulation. Mater. Today Sustain. 2022, 20, 100241. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Films 2000, 361, 527–532. [Google Scholar] [CrossRef]
- Anwar, F.; Mahbub, R.; Satter, S.S.; Ullah, S.M. Effect of Different HTM Layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance. Int. J. Photoenergy 2017, 2017, 9846310. [Google Scholar] [CrossRef]
- Takahashi, Y.; Obara, R.; Lin, Z.; Takahashi, Y. Charge-Transport in Tin-Iodide Perovskite CH3NH3SnI3: Origin of High Conductivity Takahashi. Dalt. Trans. 2011, 40, 5563–5568. [Google Scholar] [CrossRef] [PubMed]
- Sabetvand, R.; Ghazi, M.E.; Izadifard, M. Studying Temperature Effects on Electronic and Optical Properties of Cubic CH3NH3SnI3 Perovskite. J. Comput. Electron. 2020, 19, 70–79. [Google Scholar] [CrossRef]
- Slami, A. Comparative Study of Modeling of Perovskite Solar Cell with Different HTM Layers. Int. J. Mater. 2020, 7, 2313–10555. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated Values of the Shockley-Queisser Limit for Single Junction Solar Cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Omarova, Z.; Yerezhep, D.; Aldiyarov, A.; Tokmoldin, N. In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells. Crystals 2022, 12, 699. [Google Scholar] [CrossRef]
- Du, H.J.; Wang, W.C.; Zhu, J.Z. Device Simulation of Lead-Free CH3NH3SnI3 Perovskite Solar Cells with High Efficiency. Chinese Phys. B 2016, 25, 108802. [Google Scholar] [CrossRef]
- Reyes, A.C.P.; Lázaro, R.C.A.; Leyva, K.M.; López, J.A.L.; Méndez, J.F.; Jiménez, A.H.H.; Zurita, A.L.M.; Carrillo, F.S.; Durán, E.O. Study of a Lead-Free Perovskite Solar Cell Using CZTS as HTL to Achieve a 20% PCE by SCAPS-1D Simulation. Micromachines 2021, 12, 1508. [Google Scholar] [CrossRef]
- Dang, Y.; Zhou, Y.; Liu, X.; Ju, D.; Xia, S.; Xia, H.; Tao, X. Formation of Hybrid Perovskite Tin Iodide Single Crystals by Top-Seeded Solution Growth. Angew. Chem. Int. Ed. 2016, 55, 3447–3450. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, T.; Rahaman, I.; Karmakar, S.; Halim, A.; Kumar, P. Thickness Optimization and the Effect of Different Hole Transport Materials on Methylammonium Tin Iodide (CH3NH3SnI3)-Based Perovskite Solar Cell. Emergent Mater. 2022, 6, 175–183. [Google Scholar] [CrossRef]
- Zandi, S.; Razaghi, M. Finite Element Simulation of Perovskite Solar Cell: A Study on Efficiency Improvement Based on Structural and Material Modification. Sol. Energy 2019, 179, 298–306. [Google Scholar] [CrossRef]
- Bouri, N.; Talbi, A.; Khaaissa, Y.; Derbali, S.; Bouich, A.; Nouneh, K. Insight into MAPb1−xEuxI3 Based Perovskite Solar Cell Performance Using SCAPS Simulator. Optik 2022, 271, 170235. [Google Scholar] [CrossRef]
- Hasnain, S.M. Examining the Advances, Obstacles, and Achievements of Tin-Based Perovskite Solar Cells: A Review. Sol. Energy 2023, 262, 111825. [Google Scholar] [CrossRef]
Parameters | ZnO | CH3NH3Snl3 | Spiro-OMeTAD |
---|---|---|---|
Thickness (nm) | 500 | 450 | 0.350 |
Bandgap (eV) | 3.47 | 1.3 | 3.2 |
Electron affinity (eV) | 4.3 | 4.2 | 2.1 |
Dielectric permittivity (relative) | 9 | 10 | 3 |
CB effective density of states (1/cm3) | 2 × 1018 | 1 × 1019 | 2.5 × 1018 |
VB effective density of states (1/cm3) | 1.8 × 1020 | 1 × 1018 | 1.8 × 1019 |
Electron thermal velocity (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 |
Hole thermal velocity (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 |
Electron mobility (cm2/Vs) | 1 × 102 | 1.6 | 2 × 10−4 |
Hole mobility (cm2/Vs) | 2.5 × 101 | 1.6 | 2 × 10−4 |
Shallow uniform acceptor density, NA (1/cm3) | 0 | 3 × 10+15 | 1 × 10+20 |
Shallow uniform donor density ND (1/cm3) | 1 × 10+19 | 3 × 10+15 | 0 |
Defect type | — | Neutral | Neutral |
Capture cross section electrons (cm2) | — | 1 × 10−16 | 1 × 10−15 |
Capture cross section holes (cm2) | — | 1 × 10−16 | 1 × 10−15 |
Energy level with respect to reference (eV) | — | 0.7 | 0.10 |
Nt total (1/cm3) uniform | — | 4.5 × 10+16 | 1 × 10+14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabhi, S.; Benzouid, H.; Slami, A.; Dadda, K. Modeling and Numerical Simulation of a CH3NH3SnI3 Perovskite Solar Cell Using the SCAPS1-D Simulator. Eng. Proc. 2023, 56, 97. https://doi.org/10.3390/ASEC2023-15300
Rabhi S, Benzouid H, Slami A, Dadda K. Modeling and Numerical Simulation of a CH3NH3SnI3 Perovskite Solar Cell Using the SCAPS1-D Simulator. Engineering Proceedings. 2023; 56(1):97. https://doi.org/10.3390/ASEC2023-15300
Chicago/Turabian StyleRabhi, Selma, Hichem Benzouid, Abdelhadi Slami, and Karima Dadda. 2023. "Modeling and Numerical Simulation of a CH3NH3SnI3 Perovskite Solar Cell Using the SCAPS1-D Simulator" Engineering Proceedings 56, no. 1: 97. https://doi.org/10.3390/ASEC2023-15300
APA StyleRabhi, S., Benzouid, H., Slami, A., & Dadda, K. (2023). Modeling and Numerical Simulation of a CH3NH3SnI3 Perovskite Solar Cell Using the SCAPS1-D Simulator. Engineering Proceedings, 56(1), 97. https://doi.org/10.3390/ASEC2023-15300