Federated Learning for Frequency-Modulated Continuous Wave Radar Gesture Recognition for Heterogeneous Clients †
Abstract
:1. Introduction
2. Methods
2.1. Radar Setup and Processing
2.2. Learning Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trotta, S.; Weber, D.; Jungmaier, R.W.; Baheti, A.; Lien, J.; Noppeney, D.; Tabesh, M.; Rumpler, C.; Aichner, M.; Albel, S.; et al. 2.3 SOLI: A tiny device for a new human machine interface. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021. [Google Scholar]
- Lien, J.; Gillian, N.; Karagozler, M.E.; Amihood, P.; Schwesig, C.; Olson, E.; Raja, H.; Poupyrev, I. Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. (TOG) 2016, 35, 1–19. [Google Scholar] [CrossRef]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 20–22 April 2017. [Google Scholar]
- Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated learning with non-iid data. arXiv 2018, arXiv:1806.00582. [Google Scholar] [CrossRef]
- Diao, E.; Ding, J.; Tarokh, V. Heterofl: Computation and communication efficient federated learning for heterogeneous clients. arXiv 2020, arXiv:2010.01264. [Google Scholar]
- Li, X.; Huang, K.; Yang, W.; Wang, S.; Zhang, Z. On the convergence of fedavg on non-iid data. arXiv 2019, arXiv:1907.02189. [Google Scholar]
- Rodio, A.; Faticanti, F.; Marfoq, O.; Neglia, G.; Leonardi, E. Federated Learning under Heterogeneous and Correlated Client Availability. arXiv 2023, arXiv:2301.04632. [Google Scholar]
- Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2020, 2, 429–450. [Google Scholar]
- Sattler, F.; Wiedemann, S.; Müller, K.R.; Samek, W. Robust and communication-efficient federated learning from non-iid data. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3400–3413. [Google Scholar] [CrossRef] [PubMed]
- Lohana, A.; Rupani, A.; Rai, S.; Kumar, A. Efficient privacy-aware federated learning by elimination of downstream redundancy. IEEE Des. Test 2021, 3, 73–81. [Google Scholar] [CrossRef]
- Savazzi, S.; Kianoush, S.; Rampa, V.; Bennis, M. A framework for energy and carbon footprint analysis of distributed and federated edge learning. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021. [Google Scholar]
- Yang, Y.; Hong, Y.G.; Park, J. Federated learning over wireless backhaul for distributed micro-Doppler radars: Deep learning aided gradient estimation. IET Radar Sonar Navig. 2022, 16, 885–895. [Google Scholar] [CrossRef]
- Strobel, M.; Schoenefeld, S.; Daugalas, J. Gesture recognition for fmcw radar on the edge. arXiv 2023, arXiv:2310.08876. [Google Scholar]
- Gerstmair, M.; Melzer, A.; Onic, A.; Huemer, M. On the safe road toward autonomous driving: Phase noise monitoring in radar sensors for functional safety compliance. IEEE Signal Process. Mag. 2019, 36, 60–70. [Google Scholar] [CrossRef]
- Zhang, B.B.; Zhang, D.; Li, Y.; Hu, Y.; Chen, Y. Unsupervised domain adaptation for device-free gesture recognition. arXiv 2021, arXiv:2111.10602. [Google Scholar]
Radar Processing | Parameters | Mitigates Non-Iid Data | Task | |
---|---|---|---|---|
This work | 1D | 1.000 | Yes | 6-class classification |
Savazzi et al. [11] | 2D | 3.000.000 | No | Regression |
Yang et al. [12] | 2D | 30.400 | No | 3-class Classification |
Labels Per Client | This Work: 5 Local Epochs (Synchronous) | Baseline: 5 Local Epochs (Synchronous) | This Work: 1 to 20 Local Epochs (Asynchronous) | Baseline: 1 to 20 Local Epochs (Asynchronous) | Baseline: Traditional Learning |
---|---|---|---|---|---|
5 (iid) | 98.2% | 96.2% | 98.4% | 96.0% | 98.8% |
4 | 98.0% | 86.2% | 98.4% | 91.9% | - |
3 | 97.7% | 83.2% | 97.8% | 90.0% | - |
2 | 97.4% | 79.0% | 97.4% | 88.1% | - |
1 | 97.0% | 64.8% | 96.1% | 78.5% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukianto, T.; Wagner, M.; Seifi, S.; Strobel, M.; Carbonelli, C. Federated Learning for Frequency-Modulated Continuous Wave Radar Gesture Recognition for Heterogeneous Clients. Eng. Proc. 2023, 58, 76. https://doi.org/10.3390/ecsa-10-16194
Sukianto T, Wagner M, Seifi S, Strobel M, Carbonelli C. Federated Learning for Frequency-Modulated Continuous Wave Radar Gesture Recognition for Heterogeneous Clients. Engineering Proceedings. 2023; 58(1):76. https://doi.org/10.3390/ecsa-10-16194
Chicago/Turabian StyleSukianto, Tobias, Matthias Wagner, Sarah Seifi, Maximilian Strobel, and Cecilia Carbonelli. 2023. "Federated Learning for Frequency-Modulated Continuous Wave Radar Gesture Recognition for Heterogeneous Clients" Engineering Proceedings 58, no. 1: 76. https://doi.org/10.3390/ecsa-10-16194
APA StyleSukianto, T., Wagner, M., Seifi, S., Strobel, M., & Carbonelli, C. (2023). Federated Learning for Frequency-Modulated Continuous Wave Radar Gesture Recognition for Heterogeneous Clients. Engineering Proceedings, 58(1), 76. https://doi.org/10.3390/ecsa-10-16194