Fractal Autoencoder-Based Unsupervised Hyperspectral Bands Selection for Remote Sensing Land-Cover Classification †
Abstract
:1. Introduction
2. Methodology
2.1. Formalization of AE
2.2. Formalization of Feature Selection
2.3. Formalization of FAE
3. Experiments
3.1. Dataset Description
3.2. Result and Discussion
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Wah, Y.B.; Ibrahim, N.; Hamid, H.A.; Abdul-Rahman, S.; Fong, S. Feature selection methods: Case of filter and wrapper approaches for maximising classification accuracy. Pertanika J. Sci. Technol. 2018, 26, 329–340. [Google Scholar]
- Lu, Y.; Cohen, I.; Zhou, X.S.; Tian, Q. Feature selection using principal feature analysis. In Proceedings of the 15th ACM International Conference on Multimedia, Augsburg, Germany, 24–29 September 2007; pp. 301–304. [Google Scholar]
- Cai, D.; Zhang, C.; He, X. Unsupervised feature selection for multi-cluster data. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010; pp. 333–342. [Google Scholar]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Balın, M.F.; Abid, A.; Zou, J. Concrete autoencoders: Differentiable feature selection and reconstruction. In Proceedings of the International Conference on Machine Learning, Beach, CA, USA, 10–15 June 2019; pp. 444–453. [Google Scholar]
- Wu, X.; Cheng, Q. Fractal autoencoders for feature selection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2021; Volume 35, pp. 10370–10378. [Google Scholar]
Accuracy | |||||
---|---|---|---|---|---|
UDFS | MCFS | AE | PCA | FAE | |
RF | 0.48 | 0.80 | 0.85 | 0.79 | 0.85 |
LGBM | 0.44 | 0.57 | 0.56 | 0.55 | 0.57 |
XGBOOST | 0.55 | 0.81 | 0.87 | 0.80 | 0.85 |
CATBOOST | 0.50 | 0.81 | 0.82 | 0.50 | 0.85 |
F1-Score | |||||
---|---|---|---|---|---|
UDFS | MCFS | AE | PCA | FAE | |
RF | 0.26 | 0.87 | 0.86 | 0.82 | 0.90 |
LGBM | 0.61 | 0.86 | 0.86 | 0.82 | 0.89 |
XGBOOST | 0.29 | 0.82 | 0.82 | 0.83 | 0.88 |
CATBOOST | 0.29 | 0.87 | 0.87 | 0.83 | 0.89 |
Recall | |||||
---|---|---|---|---|---|
UDFS | MCFS | AE | PCA | FAE | |
RF | 0.24 | 0.88 | 0.86 | 0.80 | 0.91 |
LGBM | 0.00 | 0.84 | 0.80 | 0.77 | 0.89 |
XGBOOST | 0.30 | 0.85 | 0.86 | 0.83 | 0.88 |
CATBOOST | 0.29 | 0.86 | 0.86 | 0.83 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benali, S.; Larabi, M.E.A.; Attaf, D. Fractal Autoencoder-Based Unsupervised Hyperspectral Bands Selection for Remote Sensing Land-Cover Classification. Eng. Proc. 2023, 56, 304. https://doi.org/10.3390/ASEC2023-15879
Benali S, Larabi MEA, Attaf D. Fractal Autoencoder-Based Unsupervised Hyperspectral Bands Selection for Remote Sensing Land-Cover Classification. Engineering Proceedings. 2023; 56(1):304. https://doi.org/10.3390/ASEC2023-15879
Chicago/Turabian StyleBenali, Sara, Mohammed El Amin Larabi, and Dalila Attaf. 2023. "Fractal Autoencoder-Based Unsupervised Hyperspectral Bands Selection for Remote Sensing Land-Cover Classification" Engineering Proceedings 56, no. 1: 304. https://doi.org/10.3390/ASEC2023-15879
APA StyleBenali, S., Larabi, M. E. A., & Attaf, D. (2023). Fractal Autoencoder-Based Unsupervised Hyperspectral Bands Selection for Remote Sensing Land-Cover Classification. Engineering Proceedings, 56(1), 304. https://doi.org/10.3390/ASEC2023-15879