Comparative Evaluation of the Antimicrobial Efficacy of Sodium Hypochlorite, Silver Nanoparticles, and Zinc Nanoparticles against Candidal Biofilm: An In Vitro Study †
Abstract
:1. Introduction
2. Methodology
2.1. Specimen Preparation
2.2. Inoculation of Specimen in the Sabouraud Dextrose Broth
2.3. Colony Counting
- The samples were divided into 4 groups (n = 5):
- Group 1: Biofilm contaminated tooth irrigated with saline.
- Group 2: Biofilm contaminated tooth irrigated with 5.25% NaOCl.
- Group 3: Biofilm contaminated tooth irrigated with 0.02% Ag-NPs.
- Group 4: Biofilm contaminated tooth irrigated with 0.02% Zn-NPs.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torabinejad, M.; Walton, R.E. Pulp and periapical pathosis. Endod. Princ. Pract. 2008, 4, 49. [Google Scholar]
- Usri, K.; Prisinda, D.; Malinda, Y. Analysis of Various Factors that Cause the Failure of Root Canal Treatment: Scoping Review. J. Int. Dent. Med. Res. 2023, 16, 404–410. [Google Scholar]
- Yoo, Y.J.; Perinpanayagam, H.; Oh, S.; Kim, A.R.; Han, S.H.; Kum, K.Y. Endodontic biofilms: Contemporary and future treatment options. Restor. Dent. Endod. 2019, 44, e7. [Google Scholar] [CrossRef] [PubMed]
- Svensäter, G.; Bergenholtz, G. Biofilms in endodontic infections. Endod. Top. 2004, 9, 27–36. [Google Scholar] [CrossRef]
- Haapasalo, M.; Shen, Y.; Qian, W.; Gao, Y. Irrigation in endodontics. Dent. Clin. 2010, 54, 291–312. [Google Scholar] [CrossRef]
- Zehnder, M. Root canal irrigants. J. Endod. 2006, 32, 389–398. [Google Scholar] [CrossRef]
- Kishen, A.; Shi, Z.; Shrestha, A.; Neoh, K.G. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J. Endod. 2008, 34, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Zhilong, S.; Gee, N.K.; Kishen, A. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J. Endod. 2010, 36, 1030–1035. [Google Scholar] [CrossRef]
- De Almeida, J.; Cechella, B.C.; Bernardi, A.V.; de Lima Pimenta, A.; Felippe, W.T. Effectiveness of nanoparticles solutions and conventional endodontic irrigants against Enterococcus faecalis biofilm. Indian J. Dent. Res. 2018, 29, 347–351. [Google Scholar] [CrossRef]
- Kumar, J.; Sharma, R.; Sharma, M.; Prabhavathi, V.; Paul, J.; Chowdary, C.D. Presence of Candida albicans in root canals of teeth with apical periodontitis and evaluation of their possible role in failure of endodontic treatment. J. Int. Oral Health 2015, 7, 42. [Google Scholar]
- Shah, N.; Madhu, K.S.; Murthy, B.S.; Hemanth, B.; Mathew, S.; Nagaraj, S. Identification of presence of Candida albicans in primary root canal infections: An: In vitro: Study. Endodontology 2016, 28, 109–113. [Google Scholar]
- Baumgartner, J.C.; Watts, C.M.; Xia, T. Occurrence of Candida albicans in infections of endodontic origin. J. Endod. 2000, 26, 695–698. [Google Scholar] [CrossRef]
- Alshanta, O.A.; Shaban, S.; Nile, C.J.; McLean, W.; Ramage, G. Candida albicans biofilm heterogeneity and tolerance of clinical isolates: Implications for secondary endodontic infections. Antibiotics 2019, 8, 204. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, H.; Samiee, M.; Eslami, G.; Hosseini, M.R.G. Presence of Candida albicans in root canal system of teeth requiring endodontic retreatment with and without periapical lesions. Iran. Endod. J. 2007, 2, 24. [Google Scholar] [PubMed]
- Munson, M.A.; Pitt-Ford, T.; Chong, B.; Weightman, A.; Wade, W.G. Molecular and cultural analysis of the microflora associated with endodontic infections. J. Dent. Res. 2002, 81, 761–766. [Google Scholar] [CrossRef]
- Drews, D.J.; Nguyen, A.D.; Diederich, A.; Gernhardt, C.R. The Interaction of Two Widely Used Endodontic Irrigants, Chlorhexidine and Sodium Hypochlorite, and Its Impact on the Disinfection Protocol during Root Canal Treatment. Antibiotics 2023, 12, 589. [Google Scholar] [CrossRef]
- Spanó, J.C.; Barbin, E.L.; Santos, T.C.; Guimarães, L.F.; Pécora, J.D. Solvent action of sodium hypochlorite on bovine pulp and physico-chemical properties of resulting liquid. Braz. Dent. J. 2001, 12, 154–157. [Google Scholar]
- Odds, F.C. Candida and Candidosis: A Review and Bibliography; Bailliere Tindall: Paris, France, 1988. [Google Scholar]
- Gómez, C.; Salcedo-Moncada, D.; Ayala, G.; Watanabe, R.; Pineda, M.; Alvítez-Temoche, D.; Mayta-Tovalino, F. Antimicrobial efficacy of calcium and sodium hypochlorite at different concentrations on a biofilm of Enterococcus faecalis and Candida albicans: An in vitro comparative study. J. Contemp. Dent. Pract. 2020, 21, 178–182. [Google Scholar] [CrossRef]
- Estrela, C.; Estrela, C.R.; Barbin, E.L.; Spanó, J.C.E.; Marchesan, M.A.; Pécora, J.D. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113–117. [Google Scholar] [CrossRef]
- Raura, N.; Garg, A.; Arora, A.; Roma, M. Nanoparticle technology and its implications in endodontics: A review. Biomater. Res. 2020, 24, 1–8. [Google Scholar] [CrossRef]
- Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.S.; Ghaemi, E.; Koohsar, F. Influence of ZnO nanoparticles on Candida albicans isolates biofilm formed on the urinary catheter. Iran. J. Microbiol. 2018, 10, 424. [Google Scholar]
- Hosseini, S.S.; Ghaemi, E.; Noroozi, A.; Niknejad, F. Zinc oxide nanoparticles inhibition of initial adhesion and ALS1 and ALS3 gene expression in Candida albicans strains from urinary tract infections. Mycopathologia 2019, 184, 261–271. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Joshaghani, H.; Shokohi, T.; Ahmadi, A.; Mehrbakhsh, Z. Antifungal activity of ZnO nanoparticles and nystatin and downregulation of SAP1-3 genes expression in fluconazole-resistant Candida albicans isolates from vulvovaginal candidiasis. Infect. Drug Resist. 2020, 13, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Goddard, P.A.; Iliffe, C.; Timmins, B.; Rickard, A.H.; Robson, G.; Handley, P. Comparative susceptibility of resident and transient hand bacteria to para-chloro-meta-xylenol and triclosan. J. Appl. Microbiol. 2002, 93, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Dunne, W.M., Jr.; Mason, E.O., Jr.; Kaplan, S.L. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother. 1993, 37, 2522–2526. [Google Scholar] [CrossRef]
- Wu, D.; Fan, W.; Kishen, A.; Gutmann, J.L.; Fan, B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J. Endod. 2014, 40, 285–290. [Google Scholar] [CrossRef]
- Berber, V.B.; Gomes, B.P.F.A.; Sena, N.T.; Vianna, M.E.; Ferraz, C.C.R.; Zaia, A.A.; Souza-Filho, F.J. Efficacy of various concentrations of NaOCl and instrumentation techniques in reducing Enterococcus faecalis within root canals and dentinal tubules. Int. Endod. J. 2006, 39, 10–17. [Google Scholar] [CrossRef]
- Moghadas, L.; Shahmoradi, M.; Narimani, T. Antimicrobial activity of a new nanobased endodontic irrigation solution: In vitro study. Dent. Hypotheses 2012, 3, 142. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Qiu, X.; Burda, C. Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J. Photochem. Photobiol. A Chem. 2007, 190, 94–100. [Google Scholar] [CrossRef]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef] [PubMed]
Group A | Group B | Group C | Group D | |
---|---|---|---|---|
Group 1 Saline Negative Control | Group 2 NaOCl | Group 3 Silver Nano Particles | Group 4 Zinc Nano Particles | |
MEAN | 5.2263 | 2.1462 | 4.9401 | 3.9129 |
SD | 0.0329 | 0.0818 | 0.39743 | 0.0300 |
1st quartile | 5.2148 | 2.0791 | 5.07918 | 3.9030 |
3rd quartile | 5.2552 | 2.2041 | 5.13033 | 3.9294 |
IQR | 0.0404 | 0.1249 | 0.05115 | 0.0263 |
pValue * | 0.00047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravi, V.; Kini, S.; Shenoy, N.; Somayaji, K.; Shenoy, P. Comparative Evaluation of the Antimicrobial Efficacy of Sodium Hypochlorite, Silver Nanoparticles, and Zinc Nanoparticles against Candidal Biofilm: An In Vitro Study. Eng. Proc. 2023, 59, 170. https://doi.org/10.3390/engproc2023059170
Ravi V, Kini S, Shenoy N, Somayaji K, Shenoy P. Comparative Evaluation of the Antimicrobial Efficacy of Sodium Hypochlorite, Silver Nanoparticles, and Zinc Nanoparticles against Candidal Biofilm: An In Vitro Study. Engineering Proceedings. 2023; 59(1):170. https://doi.org/10.3390/engproc2023059170
Chicago/Turabian StyleRavi, Varsha, Sandya Kini, Neetha Shenoy, Krishnaraj Somayaji, and Padmaja Shenoy. 2023. "Comparative Evaluation of the Antimicrobial Efficacy of Sodium Hypochlorite, Silver Nanoparticles, and Zinc Nanoparticles against Candidal Biofilm: An In Vitro Study" Engineering Proceedings 59, no. 1: 170. https://doi.org/10.3390/engproc2023059170
APA StyleRavi, V., Kini, S., Shenoy, N., Somayaji, K., & Shenoy, P. (2023). Comparative Evaluation of the Antimicrobial Efficacy of Sodium Hypochlorite, Silver Nanoparticles, and Zinc Nanoparticles against Candidal Biofilm: An In Vitro Study. Engineering Proceedings, 59(1), 170. https://doi.org/10.3390/engproc2023059170