Advancements in Textile Roofing Solutions for Challenging Weather Conditions †
Abstract
:1. Introduction
2. Textile Membranes
3. Use of Fibers and Textiles in Roof Constructions
4. Current Textile Material Developments
5. Textile Roofing Applications
6. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mishra, R.; Petru, M. 14—Application of knitted fabrics in textile structural composites. In The Textile Institute Book Series, Advanced Knitting Technology; Maity, S., Rana, S., Pandit, P., Singha, K., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 411–470. [Google Scholar] [CrossRef]
- Maity, S.; Singha, K.; Pandit, P. 1—Introduction to functional and technical textiles. In The Textile Institute Book Series, Functional and Technical Textiles; Maity, S., Singha, K., Pandit, P., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 1–30. [Google Scholar] [CrossRef]
- Sonnendecker, A.; Viljoen, D.; Ameduri, B.; Crouse, P. Chapter 10—Fluoropolymer-based architectural textiles: Production, processing, and characterization. In Progress in Fluorine Science, Fascinating Fluoropolymers and Their Applications; Ameduri, B., Fomin, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 337–399. [Google Scholar] [CrossRef]
- Cassar, J.; Galdies, C.; Muscat Azzopardi, E. A New Approach to Studying Traditional Roof Behaviour in a Changing Climate—A Case Study from the Mediterranean Island of Malta. Heritage 2021, 4, 3543–3571. [Google Scholar] [CrossRef]
- Rizzo, G.; Cirrincione, L.; La Gennusa, M.; Peri, G.; Scaccianoce, G. Green Roofs’ End of Life: A Literature Review. Energies 2023, 16, 596. [Google Scholar] [CrossRef]
- Yıldırım, S.; Özburak, Ç.; Özden, Ö. Green Roofs, Vegetation Types, Impact on the Thermal Effectiveness: An Experimental Study in Cyprus. Sustainability 2023, 15, 2807. [Google Scholar] [CrossRef]
- Kazemi, M.; Rahif, R.; Courard, L.; Attia, S. Sensitivity analysis and weather condition effects on hygrothermal performance of green roof models characterized by recycled and artificial materials’ properties. Build. Environ. 2023, 237, 110327. [Google Scholar] [CrossRef]
- Rezende Leite, F.; Pereira Antunes, M.L. Green roof recent designs to runoff control: A review of building materials and plant species used in studies. Ecol. Eng. 2023, 189, 106924. [Google Scholar] [CrossRef]
- Cremers, J.; Palla, N.; Buck, D.; Beck, A.; Biesinger, A.; Brodkorb, S. Analysis of a Translucent Insulated Triple-layer Membrane Roof for a Sport Centre in Germany. Procedia Eng. 2016, 155, 38–46. [Google Scholar] [CrossRef]
- Gürlich, D.; Reber, A.; Biesinger, A.; Eicker, U. Daylight Performance of a Translucent Textile Membrane Roof with Thermal Insulation. Buildings 2018, 8, 118. [Google Scholar] [CrossRef]
- Reimann, K.; Kneer, A.; Weißhuhn, C.; Blum, R.A.; Simulation model for the yearly energy demand of buildings with two-or-more -layered textile roofs. International Conference on Textile Composites and Inflatable Structures. In Structural Membranes; Oñate, E., Kröplin, B., Bletzinger, K.-U., Eds.; 2011. Available online: https://upcommons.upc.edu/bitstream/handle/2117/186081/MEMBRANES_2011-30_A%20simulation%20model%20for%20the%20yearly.pdf?sequence=1&isAllowed=y (accessed on 12 June 2023).
- Sluyts, Y.; Glorieux, C.; Rychtarikova, M. Effective absorption of architectural ETFE mem-branes in the lab. In Proceedings of the Euroregio/BNAM 2022 Conference, Aalborg, Denmark, 9–11 May 2022; pp. 289–295. Available online: https://www.conforg.fr/erbnam2022/output_directory/data/articles/000005.pdf (accessed on 1 June 2023).
- Chang, Y.; Liu, F. Review of Waterproof Breathable Membranes: Preparation, Performance and Applications in the Textile Field. Materials 2023, 16, 5339. [Google Scholar] [CrossRef] [PubMed]
- Łuczak, B.; Sumelka, W.; Wypych, A. Experimental Analysis of Mechanical Anisotropy of Selected Roofing Felts. Materials 2021, 14, 6907. [Google Scholar] [CrossRef]
- De Vita, M.; Beccarelli, P.; Laurini, E.; De Berardinis, P. Performance Analyses of Temporary Membrane Structures: Energy Saving and CO2 Reduction through Dynamic Simulations of Textile Envelopes. Sustainability 2018, 10, 2548. [Google Scholar] [CrossRef]
- Czarnecki, S.; Rudner, M. Recycling of Materials from Renovation and Demolition of Building Structures in the Spirit of Sustainable Material Engineering. Buildings 2023, 13, 1842. [Google Scholar] [CrossRef]
- Morandi, A.; Monticelli, C. Textile Membranes Reused as a Tool for Noise Control. Buildings 2023, 13, 2134. [Google Scholar] [CrossRef]
- Antolinc, D.; Filipič, K.E. Recycling of Nonwoven Polyethylene Terephthalate Textile into Thermal and Acoustic Insulation for More Sustainable Buildings. Polymers 2021, 13, 3090. [Google Scholar] [CrossRef] [PubMed]
- Chakartnarodom, P.; Prakaypan, W.; Ineure, P.; Chuankrerkkul, N.; Laitila, E.A.; Kongkajun, N. Properties and performance of the basalt-fiber reinforced texture roof tiles. Case Stud. Constr. Mater. 2020, 13, e00444. [Google Scholar] [CrossRef]
- Halvaei, M. 3—Fibers and textiles reinforced cementitious composites. In The Textile Institute Book Series, Engineered Polymeric Fibrous Materials; Latifi, M., Ed.; Woodhead Publishing: Sawston, UK, 2021; pp. 73–92. [Google Scholar] [CrossRef]
- Orlowsky, J.; Beßling, M.; Kryzhanovskyi, V. Prospects for the Use of Tex-tile-Reinforced Concrete in Buildings and Structures Maintenance. Buildings 2023, 13, 189. [Google Scholar] [CrossRef]
- Ngo, D.Q.; Nguyen, H.C. Experimental and numerical investigations of textile-reinforced concrete thin-wall panel bolted connections. Case Stud. Constr. Mater. 2023, 19, e02229. [Google Scholar] [CrossRef]
- Su, B.; Zhang, T.; Chen, S.; Hao, J.; Zhang, R. Thermal proper-ties of novel sandwich roof panel made of basalt fiber reinforced plastic material. J. Build. Eng. 2022, 52, 104478. [Google Scholar] [CrossRef]
- Islam, M.J.; Ahmed, T.; Imam, S.M.F.B.; Islam, H.; Shaikh, F.U.A. Comparative study of carbon fiber and galvanized iron textile reinforced concrete. Constr. Build. Mater. 2023, 374, 130928. [Google Scholar] [CrossRef]
- Khan, M.B.; Waqar, A.; Bheel, N.; Shafiq, N.; Hamah Sor, N.; Radu, D.; Benjeddou, O. Optimization of Fresh and Mechanical Characteristics of Carbon Fiber-Reinforced Concrete Composites Using Response Surface Technique. Buildings 2023, 13, 852. [Google Scholar] [CrossRef]
- Silva, A.C.Q.; Silvestre, A.J.D.; Freire, C.S.R.; Vilela, C. 10—Modification of textiles for functional applications. In The Textile Institute Book Series, Fundamentals of Natural Fibres and Textiles; Mondal, I.H., Ed.; Woodhead Publishing: Sawston, UK, 2021; pp. 303–365. [Google Scholar] [CrossRef]
- Pereira, C.; Pereira, A.M.; Freire, C.; Pinto, T.V.; Costa, R.S.; Teixeira, J.S. Chapter 21—Nanoengineered textiles: From advanced functional nanomaterials to ground-breaking high-performance clothing. In Micro and Nano Technologies, Handbook of Functionalized Nanomaterials for Industrial Applications; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 611–714. [Google Scholar] [CrossRef]
- Pervez, M.N.; Hossain, M.Y.; Talukder, M.E.; Faisal, A.M.; Hasan, K.M.F.; Islam, M.; Ahmed, F.; Cai, Y.; Stylios, G.K.; Naddeo, V.; et al. 3—Nanomaterial-based smart and sustainable protective textiles. In The Textile Institute Book Series, Protective Textiles from Natural Resources; Mondal, I.H., Ed.; Woodhead Publishing: Sawston, UK, 2022; pp. 75–111. [Google Scholar] [CrossRef]
- Nguyen, K.T.Q.; Navaratnam, S.; Mendis, P.; Zhang, K.; Barnett, J.; Wang, H. Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete. Compos. Part B Engineering 2020, 187, 107815. [Google Scholar] [CrossRef]
- Li, M.; Wang, F.P.; Boussu, F.; Soulat, D. Investigation of impact performance of 3-dimensional interlock polymer fabrics in double and multi-angle pass stabbing. Mater. Des. 2021, 206, 109775. [Google Scholar] [CrossRef]
- Ferreira, C.; Ribeiro, J.; Furtado, C.; Salazar, C.; Sá, I.; Silva, R.; Midão, M.; Silva, L.; Sequeira, P.; Ferreira, P.; et al. Smart Roofs System: Moisture and Temperature Monitoring on Smart Roofs. In Sustainable, Innovative and Intelligent Societies and Cities. EAI/Springer Innovations in Communication and Computing; da Silva Portela, C.F., Ed.; Springer: Cham, Switzerland, 2023; Volume 14, pp. 329–354. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; He, B.J.; Xu, W.; Jin, G.; Zhang, X. Application and sustainability analysis of the key technologies in nearly zero energy buildings in China. Renew. Sustain. Energy Rev. 2019, 101, 329–345. [Google Scholar] [CrossRef]
- Qiao, Y.; Ren, J.; Wu, J.; Chen, S.J. A new heat resistant load bearing system incorporating honeycomb structured cementitious composite investigated via experiments and modelling. Case Stud. Constr. Mater. 2023, 19, e02379. [Google Scholar] [CrossRef]
- Hussen, M.S.; Kyosev, Y.; Pietsch, K.; Pilling, T.; Boll, J.; Kabish, A.K. Uncovering the peel strength performance of multi-layer ultrasonic weld seams in PVC-coated hybrid textiles for weather protection. J. Adv. Join. Process. 2023, 8, 100151. [Google Scholar] [CrossRef]
- Li, Q.; Zanelli, A. A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems. Renew. Sustain. Energy Rev. 2021, 139, 110678. [Google Scholar] [CrossRef]
- Patankar, K.C.; Biranje, S.; Pawar, A.; Maiti, S.; Shahid, M.; More, S.; Adivarekar, R.V. Fabrication of chitosan-based finishing agent for flame-retardant, UV-protective, and antibacterial cotton fabrics. Mater. Today Commun. 2022, 33, 104637. [Google Scholar] [CrossRef]
- Yin, Y.; Song, Y.; Chen, W.; Yan, Y.; Wang, X.; Hu, J.; Zhao, B.; Ren, S. Thermal environment analysis of enclosed dome with double-layered PTFE fabric roof integrated with aerogel-glass wool insulation mats: On-site test and numerical simulation. Energy Build. 2022, 254, 111621. [Google Scholar] [CrossRef]
- Hu, J.; Kawaguchi, K.; Ma, J. Long-term building thermal performance of enclosed large-span swimming stadiums with retractable membrane ceilings. Energy Build. 2020, 207, 109363. [Google Scholar] [CrossRef]
- Kalthoff, M.; Bosbach, S.; Backes, J.G.; Morales Cruz, C.; Claßen, M.; Traverso, M.; Raupach, M.; Matschei, T. Fabrication of lightweight, carbon textile reinforced concrete components with internally nested lattice structure using 2-layer extrusion by LabMorTex. Constr. Build. Mater. 2023, 395, 132334. [Google Scholar] [CrossRef]
- Mastrapostoli, E.; Karlessi, T.; Pantazaras, A.; Kolokotsa, D.; Gobakis, K.; Santamouris, M. On the cooling potential of cool roofs in cold climates: Use of cool fluorocar-bon coatings to enhance the optical properties and the energy performance of industrial buildings. Energy Build. 2014, 69, 417–425. [Google Scholar] [CrossRef]
- Alimohammad, S.; Mohammad, S. Mitigation of the impacts of heat islands on energy consumption in buildings: A case study of the city of Tehran, Iran. Sustain. Cities Soc. 2022, 76, 103435. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, D.; She, C.; Yang, Y.; Yang, R. Personal thermal management techniques for thermal comfort and building energy saving. Mater. Today Phys. 2021, 20, 100465. [Google Scholar] [CrossRef]
- Zhu, F.L.; Feng, Q.Q. Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int. J. Therm. Sci. 2021, 165, 106899. [Google Scholar] [CrossRef]
- Sprou, J.; Pun, W.B.H.; Rosenfeld, A.H. Economic comparison of white, green and black flat roofs in the United States. Energy Build. 2014, 71, 20–27. [Google Scholar] [CrossRef]
- Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Geiger Lynch MacBain Campbell Engineers. 2023. Available online: https://www.geigerengineers.com/about (accessed on 6 August 2023).
- Bridair. 2023. Available online: https://www.birdair.com/membrane/ (accessed on 6 August 2023).
- Bridair. 2023. Available online: https://www.birdair.com/membrane/insulated-translucent-membrane/ (accessed on 6 August 2023).
- Available online: https://www.vector-foiltec.com/wp-content/uploads/2020/12/UL-EPD-Product-Specific-Vector-Foiltec-2019.pdf (accessed on 6 August 2023).
- Serge Ferrari SA 2018. 2023. Available online: https://www.sergeferrari.com/de-de/produkteproduktreihe-flexlight/flexlight-xtrem-tx30-ii (accessed on 6 August 2023).
- Temme//Obermeier GmbH. 2023. Available online: https://www.3dtex.de/en/3d-isoskin/ (accessed on 6 August 2023).
- 3dtex GmbH. 2023. Available online: https://www.3dtex.de/en/projects/ (accessed on 6 August 2023).
Companies | Materials and Technologies | References |
---|---|---|
Geiger Engineers | Enduring structural fabric and membrane materials encompass TEFLON™-coated fiberglass® and other types of membranes. | [46] |
Birdair Inc. | Tensotherm™ composite consists of a thin, translucent membrane integrated into aerogel, which is enclosed between an outer skin made of a PTFE- or PVC-coated factory membrane and a thinner, lighter inner layer serving as an acoustic or vapor barrier (U.S. Patent No. 8,899,0009). | [47,48] |
Vector Folitec GmbH | The Texlon® system employs pneumatically stabilized film components that are fused through welding. Typically, these components consist of either two or five layers of ETFE film (ethylene tetrafluoroethylene). The thickness of the ETFE film ranges from 80 μm to 300 μm, based on the structural needs of the building. | [49] |
Serge Ferrari Group | Flexlight Xtrem TX30-II utilizes crosslink technology to create a high-performance membrane. During the production process, the polyester microcable is stretched bidirectionally while being coated. | [50] |
Temme Obermeier GmbH | Tailored materials and customized membrane configurations encompass PES/PVC, ETFE, PTFE, Silicone/Glass, and Low-E coatings. | [51] |
3dtex GmbH | 3d-IsoSkin represents a multi-layered system containing insulating material, wherein various fabric layers can be integrated in combination. | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moselewski, K.-L.; Wirth, E.; Sabantina, L. Advancements in Textile Roofing Solutions for Challenging Weather Conditions. Eng. Proc. 2023, 56, 292. https://doi.org/10.3390/ASEC2023-15974
Moselewski K-L, Wirth E, Sabantina L. Advancements in Textile Roofing Solutions for Challenging Weather Conditions. Engineering Proceedings. 2023; 56(1):292. https://doi.org/10.3390/ASEC2023-15974
Chicago/Turabian StyleMoselewski, Kim-Laura, Emilia Wirth, and Lilia Sabantina. 2023. "Advancements in Textile Roofing Solutions for Challenging Weather Conditions" Engineering Proceedings 56, no. 1: 292. https://doi.org/10.3390/ASEC2023-15974
APA StyleMoselewski, K.-L., Wirth, E., & Sabantina, L. (2023). Advancements in Textile Roofing Solutions for Challenging Weather Conditions. Engineering Proceedings, 56(1), 292. https://doi.org/10.3390/ASEC2023-15974