Detection of Frauds in Deep Fake Using Deep Learning †
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Results and Comparison
5. Conclusion and Future Enhancement
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farid, H. Image forgery detection. IEEE Signal Process. Mag. 2009, 26, 16–25. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Gen-erative adversarial nets. Proc. Adv. Neural Inf. Process. Syst. 2014, 27, 1–9. [Google Scholar]
- Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, Washington, DC, USA, 2 July 2011; pp. 37–49. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 4401–4410. [Google Scholar]
- Mirsky, Y.; Lee, W. The creation and detection of deepfakes: A survey. ACM Comput. Surv. 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Masood, M.; Nawaz, M.; Malik, K.M.; Javed, A.; Irtaza, A. Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward. arXiv 2021, arXiv:2103.00484. [Google Scholar] [CrossRef]
- Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Morales, A.; Ortega-Garcia, J. Deepfakes and beyond: A Survey of face manipulation and fake detection. Inf. Fusion 2020, 64, 131–148. [Google Scholar] [CrossRef]
- Nguyen, Q.V.H.; Nguyen, D.T.; Nguyen, D.T.; Huynh-The, T.; Nahavandi, S.; Nguyen, T.T.; Pham, Q.-V.; Nguyen, C.M. Deep learning for deepfakes creation and detection: A survey. arXiv 2019, arXiv:1909.11573. [Google Scholar]
- Verdoliva, L. Media Forensics and DeepFakes: An Overview. IEEE J. Sel. Top. Signal Process 2020, 14, 910–932. [Google Scholar] [CrossRef]
- Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recog-nition with a back-propagation network. Proc. Adv. Neural Inf. Process Syst. 1989, 2, 396–404. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparna, O.; Rani, P.; Ramya, T.; Priyanka, T.; Sundari, N.; Sirisha, P.G.K.; Ramesh, R.; Anand, D. Detection of Frauds in Deep Fake Using Deep Learning. Eng. Proc. 2024, 66, 48. https://doi.org/10.3390/engproc2024066048
Aparna O, Rani P, Ramya T, Priyanka T, Sundari N, Sirisha PGK, Ramesh R, Anand D. Detection of Frauds in Deep Fake Using Deep Learning. Engineering Proceedings. 2024; 66(1):48. https://doi.org/10.3390/engproc2024066048
Chicago/Turabian StyleAparna, Osipilli, Pakanati Rani, Tulluri Ramya, Tanneru Priyanka, Neela Sundari, P. G. K. Sirisha, Repudi Ramesh, and Dama Anand. 2024. "Detection of Frauds in Deep Fake Using Deep Learning" Engineering Proceedings 66, no. 1: 48. https://doi.org/10.3390/engproc2024066048
APA StyleAparna, O., Rani, P., Ramya, T., Priyanka, T., Sundari, N., Sirisha, P. G. K., Ramesh, R., & Anand, D. (2024). Detection of Frauds in Deep Fake Using Deep Learning. Engineering Proceedings, 66(1), 48. https://doi.org/10.3390/engproc2024066048