Selected Aspects of the Antibacterial Use of Lactic Acid in Food Processing †
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Suspensions
2.2. Test Product
2.3. Method
2.4. Method Validation
2.5. Calculation
3. Results and Discussion
3.1. S. Typhimurim (ATCC 14028)
3.2. S. aureus (ATCC 33592)—MRSA
3.3. Influencing Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ölmez, H.; Kretzschmar, U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT—Food Sci. Technol. 2009, 42, 686–693. [Google Scholar] [CrossRef]
- Carpenter, C.E.; Broadbent, J.R. External concentration of organic acid anions and pH: Key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods. J. Food Sci. 2009, 74, R12–R15. [Google Scholar] [CrossRef] [PubMed]
- Komesu, A.; Oliveira, J.A.R.d.; Martins, L.H.d.S.; Wolf Maciel, M.R.; Maciel Filho, R. Lactic acid production to purification: A review. BioResources 2017, 12, 4364–4383. [Google Scholar] [CrossRef]
- Bai, Y.; Ding, X.; Zhao, Q.; Sun, H.; Li, T.; Li, Z.; Wang, H.; Zhang, L.; Zhang, C.; Xu, S. Development of an organic acid compound disinfectant to control food-borne pathogens and its application in chicken slaughterhouses. Poult. Sci. 2022, 101, 101842. [Google Scholar] [CrossRef]
- Lactic Acid Market-Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecasts, 2023–2032. Available online: https://www.precedenceresearch.com/lactic-acid-market (accessed on 18 May 2024).
- Ray, B.; Sandine, W.E. Acetic, propionic, and lactic acids of starter culture bacteria as biopreservatives. In Food Preservatives of Microbial Origin; Ray, B., Daeschel, M., Eds.; CRC Press: Boca Raton, FL, USA, 1992; pp. 103–136. [Google Scholar]
- Smulders, F.J.M.; Greer, G.G. Integrating microbial decontamination with organic acids in HACCP programmes for muscle foods: Prospects and controversies. Int. J. Food Microbiol. 1998, 44, 149–169. [Google Scholar] [CrossRef] [PubMed]
- Podolak, R.K.; Zayas, J.F.; Kastner, C.L.; Fung, D.Y.C. Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 on beef by application of organic acids. J. Food Prot. 1996, 59, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Ipikciolgu Cil, G.; Ozdemir, H.; Onaran, B.; Cengiz, G.; Sen, E. Effect of lactic acid and steam treatments on campylobacter jejuni on chicken skin. Emir. J. Food Agric. 2019, 31, 143–147. [Google Scholar] [CrossRef]
- Nkosi, D.V.; Bekker, J.L.; Hoffman, L.C. The use of organic acids (lactic and acetic) as a microbial decontaminant during the slaughter of meat animal species: A review. Foods 2021, 10, 2293. [Google Scholar] [CrossRef]
- Al-Adham, I.; Haddadin, R.; Collier, P. Types of microbicidal and microbistatic agents. In Russell, Hugo and Ayliffe’s: Principles and Practice of Disinfection, Preservation and Sterilization; Fraise, A., Maillard, J.Y., Sattar, S., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2012; Volume 2, pp. 5–70. [Google Scholar]
- EN 1276:2019; Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Bactericidal Activity of Chemical Disinfectants and Antiseptics Used in Food, Industrial, Domestic and Institutional Areas. Test Method and Requirements (Phase 2, Step 1). ISO: Geneva, Switzerland, 2019.
- Wang, X.; Biswas, S.; Paudyal, N.; Pan, H.; Li, X.; Fang, W.; Yue, M. Antibiotic Resistance in Salmonella Typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016. Front. Microbiol. 2020, 7, 985, Erratum in Front. Microbiol. 2020, 14, 1738. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Raziq, F.; Qudratullah, Q.; Kahn, N.A.; Laudadio, V.; Tufarelli, V.; Ragni, M. Prospects of organic acids as safe alternative to antibiotics in broiler chickens diet. Environ. Sci. Pollut. Res. 2022, 29, 32594–32604. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.Y.; Wang, W.; Yan, H.-; Qu, H.; Liu, Y.; Qian, Y.; Gu, R. The Effect of Different Organic Acids and Their Combination on the Cell Barrier and Biofilm of Escherichia coli. Foods 2023, 12, 3011. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Schönknecht, A.; Püning, C.; Alter, T.; Martin, A.; Bandick, N. Effect of peracetic acid solutions and lactic acid on microorganisms in on-line reprocessing systems for chicken slaughter plants. J. Food Prot. 2020, 83, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, M.; von Nessen, K.; Weiher, F.; Lactic Acid. Efficient Disinfection Inspired by Nature. Facts. 2017 Jungbunzlauer Suisse AG. Available online: https://www.jungbunzlauer.com/fileadmin/content/_PDF/PRINT_PROJECTS/Article_facts/JBL_AR_Lactic_Acid_-_Efficient_disinfection_inspired_by_nature_2017-099.pdf (accessed on 18 May 2024).
- EN 1040:2005; Chemical Disinfectants and Antiseptics—Quantitative Suspension Test for the Evaluation of Basic Bactericidal Activity of Chemical Disinfectants and Antiseptics—Test Method and Requirements (Phase 1). ISO: Geneva, Switzerland, 2005.
- Hasanpour, A.H.; Sepidarkish, M.; Mollalo, A.; Ardekani, A.; Almukhtar, M.; Mechaal, A.; Hosseini, S.R.; Bayani, M.; Javanian, M.; Rostami, A. The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2023, 29, 4. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.Y.; Singh, A.; David, M.Z.; Bartsch, S.M.; Slayton, R.B.; Huang, S.S.; Zimmer, S.M.; Potter, M.A.; Macal, C.M.; Lauderdale, D.S.; et al. The economic burden of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Clin. Microbiol. Infect. 2013, 19, 528–536. [Google Scholar] [CrossRef]
- Mahros, M.A.; Abd-Elghany, S.M.; Sallam, K.I. Multidrug-, methicillin-, and vancomycin-resistant Staphylococcus aureus isolated from ready-to-eat meat sandwiches: An ongoing food and public health concern. Int. J. Food Microbiol. 2021, 346, 109165. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, Z.W.; Ababneh, Q.O.; Sha’aban, S.T.; Alkofahi, A.A.; Assaleh, D.; Al Shara, A. Methicillin resistant Staphylococcus aureus and public fomites: A review. Pathog. Glob. Health 2020, 114, 426–450. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, D.; Delgado, S.; Vázquez-Sánchez, D.; Martínez, B.; Cabo, M.L.; Rodríguez, A.; Herrera, J.J.; García, P. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl. Environ. Microbiol. 2012, 78, 8547–8554. [Google Scholar] [CrossRef]
- Alakomi, H.L.; Skyttä, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I.M. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 2000, 66, 2001–2005. [Google Scholar] [CrossRef]
- Singh, A.; Yemmireddy, V. Pre-growth environmental stresses affect foodborne pathogens response to subsequent chemical treatments. Microorganisms 2022, 10, 786. [Google Scholar] [CrossRef] [PubMed]
- Đurđević-Milošević, D.; Petrović, A.; Elez, J.; Gagula, G.; Kalaba, V. Sustainable approach to the lactic acid production and anibacterial use. In Proceedings of the 15th International Mineral Processing and Recycling Conference (IMPRC 2023), Belgrade, Serbia, 17–19 May 2023. [Google Scholar]
- Commission Regulation (EU) No 191/2013 of 4 February 2013 Concerning the Use of Lactic Acid to Reduce Microbiological Surface Contamination on Bovine Carcases. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32013R0101 (accessed on 19 May 2024).
Bacterium | Concentration of Lactic Acid in the Product (% v/v) | Tested Concentration of Lactic Acid in the Product (% v/v) | Condition | Reduction *Xsr ± SD (lg CFUmL−1) |
---|---|---|---|---|
Salmonella enterica subsp. enterica serovar Typhimurium (ATCC 14028) | 6.25 | 5 | clean | >5.18 ± 0.04 |
6.25 | 5 | dirty | >5.18 ± 0.04 | |
1.25 | 1 | clean | >5.18 ± 0.04 | |
1.25 | 1 | dirty | >5.18 ± 0.04 | |
0.001 | 0.0008 | clean | <3.81 ± 0.04 | |
0.001 | 0.0008 | dirty | <3.81 ± 0.04 | |
Staphylococcus aureus subsp. aureus (ATCC 33592) | 6.25 | 5 | clean | <3.82 ± 0.03 |
6.25 | 5 | dirty | <3.82 ± 0.03 | |
1.25 | 1 | clean | <3.82 ± 0.03 | |
1.25 | 1 | dirty | <3.82 ± 0.03 | |
0.001 | 0.0008 | clean | <3.82 ± 0.03 | |
0.001 | 0.0008 | dirty | <3.82 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đurđević-Milošević, D.; Petrović, A.; Kalaba, V.; Stijepić, M.; Jovanović, G. Selected Aspects of the Antibacterial Use of Lactic Acid in Food Processing. Eng. Proc. 2024, 67, 2. https://doi.org/10.3390/engproc2024067002
Đurđević-Milošević D, Petrović A, Kalaba V, Stijepić M, Jovanović G. Selected Aspects of the Antibacterial Use of Lactic Acid in Food Processing. Engineering Proceedings. 2024; 67(1):2. https://doi.org/10.3390/engproc2024067002
Chicago/Turabian StyleĐurđević-Milošević, Dragica, Andrijana Petrović, Vesna Kalaba, Milka Stijepić, and Gordana Jovanović. 2024. "Selected Aspects of the Antibacterial Use of Lactic Acid in Food Processing" Engineering Proceedings 67, no. 1: 2. https://doi.org/10.3390/engproc2024067002
APA StyleĐurđević-Milošević, D., Petrović, A., Kalaba, V., Stijepić, M., & Jovanović, G. (2024). Selected Aspects of the Antibacterial Use of Lactic Acid in Food Processing. Engineering Proceedings, 67(1), 2. https://doi.org/10.3390/engproc2024067002