Quantitative Analysis of Vitamins and Amino Acids in Alhagi Mauro-Rum Plant Extract †
Abstract
:1. Introduction
2. Experimental Methods
2.1. Method of Extraction of Alhagi maurorum
2.2. Conditions of Sample Preparation and Chromatographic Analysis for Amino Acid Determination
- High-performance liquid chromatography (Agilent Technologies 1260) was used to determine the derivatives of amino acids. Using the FTK technique, amino acids were identified.
- A 75 × 4.6 mm Discovery HS C18 column was used.
- The following combinations were utilized: B: CH3CN, pH 6.4, with combinations of 0.14M CH3COONa + 0.05% TEA; The wavelength was set to 2.69 and a flow rate of 1.2 mL per minute.
- The gradient percentage B/min was as follows: 1–6%/0–2.5 min; 6–30%/2.51–40 min; 30–60%/40.1–45 min; 60–60%/45.1–50 min; 60–0%/50.1–55 min.
2.3. Conditions of Sample Preparation and Chromatographic Analysis for Vitamin Determination
- Water-soluble vitamin analysis via HPLC using Agilent Technologies 1260 liquid chromatography;
- Eclipse XDB C18 column (reverse phase), 5 μm, 4.6 × 250 mm;
- A 250 nm diode array detector (DAD);
- Solution B: CH3CN (acetonitrile) with 0.1% trifluoroacetic acid at pH 1.7;
- Flow rate: 0.8 mL/min;
- %B/min gradient: 0–5 min/0%, 5–11 min/0:25%, 11–19 min/25:40%, 19–21 min/40:40%, 21–25 min/40–0%;
- A 250C thermostat.
3. Results and Discussion
3.1. Solvent Selection for the Extraction Process
3.2. Results of the Amino Acid Analysis of the Alhagi maurorum Plant and a Discussion of the Study
3.3. Results of the Vitamins Analysis of the Alhagi maurorum Plant and a Discussion of the Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alhagi maurorum Medik. [Электрoнный Ресурс]. Available online: www.legumes-online.net/ildis/aweb/td025/td_05070.html (accessed on 1 January 2023).
- Muhammad, M.A.; Hussain, F.; Anwar, A.M.; Gilani, A.H. Alhagi: A plant genus rich in bioactives for pharmaceuticals. Phytother. Res. 2015, 29, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, G.; Xiong, Y.; Makhabel, B.; Li, X.; Jia, X. New isoflavonolignan with quinone reductase inducing activity from Alhagi pseudalhagi (M.B.). Fitoterapia 2010, 81, 1058–1061. [Google Scholar] [CrossRef] [PubMed]
- Zargari, A. Medicinal Plants; Tehran Univ Press: Tehran, Iran, 1997; pp. 924–925. [Google Scholar]
- Ghasemi-Dehkordi, N.A.; Sajadi, S.E.; Ghanadi, A.R.; Amanzadeh, Y.; Azadbakht, M.; Asghari, G.R. Iranian Herbal Pharmacopeia. Hakim J. 2003, 6, 63–69. [Google Scholar]
- The Plant List [Электрoнный Ресурс]. Available online: www.theplantlist.org (accessed on 20 January 2023.).
- Gontcharov, N.F. Astragalus L. In Flora of Uzbekistan, III; Vvedenskyi, A.I., Ed.; Uzbek Department of the Academy of Sciences of the USSR: Tashkent, Uzbekistan, 1955; pp. 473–686. (In Russian) [Google Scholar]
- Al-Douri, N.A.; Al-Essa, L.Y. A survey of plants used in Iraqi traditional medicine. Jordan J. Pharm. Sci. 2010, 3, 100–108. [Google Scholar]
- Marashdah, M.S.; Mudawi, B.M.; Al-Hazimi, H.M.; Abdallah, M.A. New triglyceride and new aliphatic ester from the roots of Alhagi maurorum medik. J. Saudi Chem. Soc. 2006, 10, 367. [Google Scholar]
- Sheweita, S.A.; Mashaly, S.; Newairy, A.A.; Abdou, H.M.; Eweda, S.M. Changes in oxidative stress and antioxidant enzyme activities in streptozotocin-induced diabetes mellitus in rats: Role of Alhagi maurorum extracts. Oxidative Med. Cell Longev. 2016, 2016, 5264064. [Google Scholar] [CrossRef]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M.; Sohraby, M.; Shahlari, N.H.R. Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. J. Tradit. Complement. Med. 2016, 7, 24–29. [Google Scholar] [CrossRef]
- Incilay, G. Volatile composition, antimicrobial and antioxidant properties of different parts from Elaeagnus angustifolia L. J. Essent. Oil Bear. Plants 2014, 17, 1187–1202. [Google Scholar] [CrossRef]
- Okmen, G.; Turkcan, O. The antibacterial activity of Elaeagnus angustifolia L. against mastitis pathogens and antioxidant capacity of the leaf methanolic extracts. J. Anim. Vet. Adv. 2013, 12, 491–496. [Google Scholar]
- Al-Jaber, N.A.; Awaad, A.S.; Moses, J.E. Review on some antioxidant plants growing in Arab world. J. Saudi Chem. Soc. 2011, 15, 293–307. [Google Scholar] [CrossRef]
- Muhammad, G.; Hussain, M.A.; Jantan, I.; Bukhari, S.N.A. Mimosa pudica L., a High-Value Medicinal Plant as a Source of Bioactives for Pharmaceuticals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Asghari, M.H.; Fallah, M.; Moloudizargari, M.; Mehdikhani, F.; Sepehrnia, P.; Moradi, B. A Systematic and Mechanistic Review on the Phytopharmacological Properties of Alhagi Species. Anc. Sci. Life 2016, 36, 65–71. [Google Scholar] [PubMed]
- Laghari, A.H.; Ali Memon, A.; Memon, S.; Nelofar, A.; Khan, K.M.; Yasmin, A. Determination of free phenolic acids and antioxidant capacity of methanolic extracts obtained from leaves and flowers of camel thorn (Alhagi maurorum). Nat. Prod. Res. 2012, 26, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Shaker, E.; Mahmoud, H.; Mnaa, S. Anti-inflammatory and anti-ulcer activity of the extract from Alhagi maurorum (camelthorn). Food Chem. Toxicol. 2010, 48, 2785–2790. [Google Scholar] [CrossRef]
- Weber, D.J.; Ansari, R.; Gul, B.K.M. Potential of halo-phytes as source of edible oil. J. Arid. Env. 2007, 68, 315–321. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, I.; Saleem, M.; Jabbar, A.; Rehman, N.U.; Hassan, S.S.U. Secondary metabolites from Alhagi maurorum. J. Chem. Soc. Pak. 2009, 31, 960–963. [Google Scholar]
- Amani, A.S.; Maitland, D.J.S.G. Antiulcerogenic activity of Alhagi maurorum. Pharm. Biol. 2006, 44, 292–296. [Google Scholar] [CrossRef]
- Al-Yahya, M.A.; Mossa, J.S.; Al-Badr, A.A.; Tariq, M.S.; Al-Meshal, I.A. Phytochemical and biological studies on Saudi medicinal plants Part 12. Int. J. Crude Drug Res. 1987, 25, 65–71. [Google Scholar] [CrossRef]
- Tarnawski, M.; Depta, K.; Grejciun, D.; Szelepin, B. HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract—A natural immunomodulator. J. Pharm. Biomed. Anal. 2006, 41, 182–188. [Google Scholar] [CrossRef]
- Nishanbaev, S.Z.; Shamyanov, I.D.; Bobakulov, H.M.; Sagdullaev, S.S. Khimicheskiy sostav i biologicheskaya activitie metabolitov rastenii roda alhagi (review). Khimiya Rastit. Srya 2019, 4, 5–28. (In Russian) [Google Scholar]
- Khalil, R.; Yusuf, M.; Bassuony, F.; Gamal, A.; Madany, M. Phytotoxic effect of Alhagi maurorum on the growth and physiological activities of Pisum sativum L. S. Afr. J. Bot. 2020, 131, 250–258. [Google Scholar] [CrossRef]
- Choriev, A.U.; Jurayev, R.S.; Abdushukurov, A.K.; Abdullayev, M.G. Synthesis of 2-Izopropyl-5-methylphenylcarboxymethylen Tartrate. Eng. Proc. 2023, 37, 57. [Google Scholar] [CrossRef]
- Jurayev, R.S.; Choriev, A.U.; Qaxxorov, N.T. The Photometric Determination of Iron(III) with 2-Napthylcarboxymethylene Citrate. Eng. Proc. 2023, 48, 49. [Google Scholar] [CrossRef]
- Jurayev, R.S.; Choriev, A.U.; Qaxxorov, N.T. Effect and Spectroscopic Analysis of Solutions in Trychloratsetylpyrogallol Synthesis. Chem. Proc. 2023, 14, 80. [Google Scholar] [CrossRef]
- Steven, A.; Cohen Daviel, J. Amino acid analysis utilizing phenylisothiocyanata derivatives. Anal. Biochem. 1988, 174, 1–16. [Google Scholar]
- Agarwal, V.; Safarzadeh, M.S.; Galvin, J. A comparative study of the solvent extraction of lanthanum(III) from different acid solutions. Miner. Process. Extr. Metall. 2021, 130, 90–97. [Google Scholar] [CrossRef]
- Schmidt, V.S. Extraction by Amines; Atomizdat: Moscow, Russia, 1970. [Google Scholar]
- Shikov, A.N.; Pozharitskaya, O.N.; Makarova, M.N.; Makarov, V.G.; Wagner, H. Bergenia crassifolia (L.) Fritsch–pharmacology and phytochemistry. Phytomedicine 2014, 21, 1534–1542. [Google Scholar] [CrossRef]
- Chuchalin, V.S. Technology of Obtaining Extraction Phytopreparations: A Tutorial; Chuchalin, V.S., Kelus, N.V., Eds.; Publishing House of Siberian State Medical University: Tomsk, Russia, 2019; 198p. [Google Scholar]
№ | Groups of Organic Compounds | Name of the Organic Matter in A. maurorum |
---|---|---|
1 | Phenolic compounds | Phenol carboxylic acids, Flavonoids, Proanthocyanidins, Xanthones, Coumarins, Hydrolyzable tannins, γ-Pyrones, Diphenyl ethers, and Naphthoquinones |
2 | Alkaloids | Arylethylamine, Pyrrole derivatives, and Isoquinoline alkaloids |
3 | Terpenoids | Mono-, Di-, and Triterpenoids and Polyterpenoids |
4 | Fatty acids and their esters | Caproic (hexanoic) acid, Palmitic acid, Triacontanoic acid methyl ester, and Tetradecanoic acid |
5 | Aldehydes | n-Hexadecanoic acid and Octadecanoic acid |
6 | Carbohydrates | Sucrose, Raffinose, Melesitose, Trisaccharide, 1-O-ß-D Methylglucoside, D-Pinitol, and α-D-Acetyl glucopyranose |
Groups of Extractable Substances | Solvents | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gasoline, Hexane | CO2 Subcritical | Freons | Acetone | Ethyl Acetate | Alcohols | Alcoholic Aqueous Solutions | Dimethyl Sulfoxide | Water | Supercritical CO2 | Supercritical with Azeotrope CO2 | |
Carbohydrates | + | +/− | + | + | + | − | − | − | − | +/− | +/− |
Carotenoids | + | + | + | + | + | − | − | − | − | + | + |
Diacylglycerols | + | + | + | + | + | − | − | − | − | + | + |
Monoacylglycerols | + | + | + | + | + | + | − | − | − | + | + |
Sterols | + | + | + | + | + | + | − | − | − | + | + |
Phospholipids | + | + | + | + | + | + | − | − | − | + | + |
Tocopherols | + | + | + | + | + | + | + | +/− | − | + | + |
Terpenoids | + | − | + | + | + | + | + | + | − | + | + |
Aldehydes, ketones | +/− | − | + | + | + | + | + | + | − | + | + |
Esters | − | − | + | + | + | + | + | + | − | + | + |
Flavonoids | − | − | +/− | + | + | + | + | + | − | + | + |
Alcohols | − | − | + | + | + | + | + | + | + | + | + |
Amino acids | − | − | − | +/− | − | + | + | + | + | + | + |
Organic acids | − | − | − | − | − | + | + | + | + | + | + |
Carbohydrates | − | − | − | − | − | − | + | + | + | + | + |
Alkaloids | − | − | − | − | − | − | + | + | + | + | + |
Tannins | − | − | − | − | − | − | + | + | + | + | + |
Phenolic compounds | − | − | − | − | − | − | + | + | + | + | + |
Glycosides | − | − | − | − | − | − | + | + | + | + | + |
Minerals | − | − | − | − | − | − | +/− | + | + | − | − |
Polysacharides | − | − | − | − | − | − | − | +/− | + | − | − |
Oligosaccharides | − | − | − | − | − | − | − | − | + | − | − |
Proteins, peptides | − | − | − | − | − | − | − | − | + | − | − |
Pectins | − | − | − | − | − | − | − | − | + | − | − |
Solvent (Dry Mass/Solvent) | Rutin | D. Quercitin | Querstin | Exysterone | Gallic Acid | Luthionine |
---|---|---|---|---|---|---|
Water (5/200) | 0.2520 | 0.0727 | 0.0856 | 0.0427 | 0.0000 | 0.2919 |
Water (5/100) | 0.4070 | 0.0818 | 0.0382 | 0.0322 | 0.0042 | 0.0695 |
Water (5/75) | 0.6380 | 0.0746 | 0.0289 | 0.0265 | 0.0043 | 0.0515 |
Water (5/50) | 0.2047 | 0.0722 | 0.0201 | 0.0336 | 0.0030 | 0.0334 |
alcohol 40% (5/200) | 1.0517 | 0.0713 | 0.0000 | 0.0243 | 0.0052 | 0.1543 |
alcohol 40% (5/100) | 0.9278 | 0.4227 | 0.0000 | 0.0209 | 0.0049 | 0.0605 |
alcohol 40% (5/75) | 0.8762 | 0.4930 | 0.0000 | 0.0229 | 0.0052 | 0.0432 |
alcohol 40% (5/50) | 0.9090 | 0.2204 | 0.0000 | 0.0229 | 0.0052 | 0.0274 |
alcohol 70% (5/200) | 0.9472 | 0.0678 | 0.0159 | 0.0206 | 0.0000 | 0.5059 |
alcohol 70% (5/100) | 0.9754 | 0.4750 | 0.0000 | 0.0208 | 0.0038 | 0.0580 |
alcohol 70% (5/75) | 0.9198 | 0.2079 | 0.0000 | 0.0192 | 0.0036 | 0.0407 |
alcohol 70% (5/50) | 1.0350 | 0.2220 | 0.0064 | 0.0217 | 0.0036 | 0.0245 |
alcohol 96% (5/200) | 0.7581 | 0.0000 | 0.0000 | 0.0146 | 0.0000 | 0.2491 |
alcohol 96% (5/100) | 0.6473 | 0.0042 | 0.0000 | 0.0137 | 0.0000 | 0.1375 |
alcohol 96% (5/75) | 0.5276 | 0.0024 | 0.0000 | 0.0139 | 0.0000 | 0.0488 |
alcohol 96% (5/50) | 0.4918 | 0.0028 | 0.0000 | 0.0127 | 0.0000 | 0.0318 |
Name of Amino Acids | Concentration mg/g |
---|---|
Aspartic acid | 0 |
Glutamic acid | 1.878941 |
Serine | 0.904018 |
Glycine | 3.474454 |
Asparagine | 7.006748 |
Glutamine | 3.891102 |
Cysteine | 6.551913 |
Threonine | 2.807103 |
Arginine | 1.987315 |
Alanine | 1.972477 |
Proline | 1.90203 |
Tyrosine | 3.698049 |
Valin | 4.519611 |
Methionine | 1.122176 |
Isolation | 1.00062 |
Leucine | 2.356721 |
Histidine | 2.415568 |
Tryptophan | 1.245416 |
Phenylalanine | 1.154935 |
Lysine | 3.194389 |
Jami | 53.08358 |
Vitamins | Amount of Vitamins Contained in the Leaf of Alhagi Maurorom | Amount of Vitamins Contained in the Stem of Alhagi Maurorom |
---|---|---|
Concentration μg/g | ||
B-1 | 0 | 0 |
B-2 | 1.341662 | 1.190836 |
B-6 | 2.015659 | 1.959313 |
B-9 | 3.269345 | 0.769618 |
PP | 0 | 0 |
C | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kholmurodov, B.B.o.; Jurayev, R.S. Quantitative Analysis of Vitamins and Amino Acids in Alhagi Mauro-Rum Plant Extract. Eng. Proc. 2024, 67, 32. https://doi.org/10.3390/engproc2024067032
Kholmurodov BBo, Jurayev RS. Quantitative Analysis of Vitamins and Amino Acids in Alhagi Mauro-Rum Plant Extract. Engineering Proceedings. 2024; 67(1):32. https://doi.org/10.3390/engproc2024067032
Chicago/Turabian StyleKholmurodov, Bahodir Bahrom ogli, and Ruzimurod Sattorovich Jurayev. 2024. "Quantitative Analysis of Vitamins and Amino Acids in Alhagi Mauro-Rum Plant Extract" Engineering Proceedings 67, no. 1: 32. https://doi.org/10.3390/engproc2024067032
APA StyleKholmurodov, B. B. o., & Jurayev, R. S. (2024). Quantitative Analysis of Vitamins and Amino Acids in Alhagi Mauro-Rum Plant Extract. Engineering Proceedings, 67(1), 32. https://doi.org/10.3390/engproc2024067032