Green Synthesis of Zinc Oxide Nanoparticles Using Lepidium sativum Seed Extract Embedded in Sodium Alginate Matrix for Efficient Slow-Release Biofertilizers †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of L. sativum Extract
2.3. Biosynthesis of ZnO Nanoparticles
2.4. Synthesis of ZnO-NPs/Alginate Beads
2.5. Preparation of Urea-Encapsulating Alginate/ZnO-NPs Beads
2.6. Characterization of Biosynthesized ZnO Nanoparticles and Urea-Encapsulating Alginate/ZnO-NPs Beads
2.7. Kinetic Study of the Release of the Active Ingredient, Urea 46%
3. Results and Discussion
3.1. Characterization
3.2. Release of Urea Fertilizer from ZnO-NPs/Alginate Beads
- 1.
- Burst release phase: An initial fast liberation of urea, most likely caused by the breakdown of molecules attached to the surface or that are inadequately confined.
- 2.
- The diffusion-controlled phase involves a gradual and prolonged release of urea as it passes through the alginate matrix.
- 3.
- Plateau phase: A progressive stabilization as the concentration gradient diminishes and converges to equilibrium.
- 1.
- Polymer matrix characteristics: the pore size, crosslinking density, and hydrophilicity of the alginate.
- 2.
- Environmental conditions: the pH, temperature, and ionic strength of the release medium.
- 3.
- Urea molecule characteristics: the size, charge, and interactions of urea with the alginate matrix.
4. General Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamed, R.; Jodeh, S.; Alkowni, R. Nano bio fertilizer capsules for sustainable agriculture. Sci. Rep. 2024, 14, 13646. [Google Scholar] [CrossRef] [PubMed]
- Penuelas, J.; Coello, F.; Sardans, J. A better use of fertilizers is needed for global food security and environmental sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Prakash, O. The impact of chemical fertilizers on our environment and ecosystem. Chief Ed. 2019, 35, 69. [Google Scholar]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; GK, S.; Vadivel, R.; TK, D.; et al. Nitrogen use efficiency—A key to enhance crop productivity under a changing climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef]
- Shukla, K.; Mishra, V.; Singh, J.; Varshney, V.; Verma, R.; Srivastava, S. Nanotechnology in sustainable agriculture: A double-edged sword. J. Sci. Food Agric. 2024, 104, 5675–5688. [Google Scholar] [CrossRef]
- Tyagi, J.; Ahmad, S.; Malik, M. Nitrogenous fertilizers: Impact on environment sustainability, mitigation strategies, and challenges. Int. J. Environ. Sci. Technol. 2022, 19, 11649–11672. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, W.; Zhu, G.; Tan, Z.; Huang, L.; Zhang, P.; Gao, L.; Rui, Y. Nano-Pesticides and Fertilizers: Solutions for Global Food Security. Nanomaterials 2023, 14, 90. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Ullah, S.; Abdi, G.; Shah, G.M.; Zaman, W.; Ayaz, A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. Sci. Total Environ. 2024, 926, 171862. [Google Scholar] [CrossRef]
- Khan, H.A.; Naqvi, S.R.; Mehran, M.T.; Khoja, A.H.; Niazi, M.B.K.; Juchelková, D.; Atabani, A. A performance evaluation study of nano-biochar as a potential slow-release nano-fertilizer from wheat straw residue for sustainable agriculture. Chemosphere 2021, 285, 131382. [Google Scholar] [CrossRef]
- Gade, A.; Ingle, P.; Nimbalkar, U.; Rai, M.; Raut, R.; Vedpathak, M.; Jagtap, P.; Abd-Elsalam, K.A. Nanofertilizers: The Next Generation of Agrochemicals for Long-Term Impact on Sustainability in Farming Systems. Agrochemicals 2023, 2, 257–278. [Google Scholar] [CrossRef]
- Malaiappan, S.; Priyangha, P.T.; Niveditha, S. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Catharanthus roseus Extract: A Novel Approach. Cureus 2024, 16, e60407. [Google Scholar] [CrossRef] [PubMed]
- Dhoke, S.K. Synthesis of nano-ZnO by chemical method and its characterization. Results Chem. 2023, 5, 100771. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Hayat, Z.; Zhang, D.D.; Li, M.Y.; Hu, S.; Wu, Q.; Cao, Y.F.; Yuan, Y. Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture. Processes 2023, 11, 1193. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Singh, A.K. Bio-waste and natural resource mediated eco-friendly synthesis of zinc oxide nanoparticles and their photocatalytic application against dyes contaminated water. Chem. Eng. J. Adv. 2023, 16, 100536. [Google Scholar] [CrossRef]
- Ragavendran, C.; Kamaraj, C.; Jothimani, K.; Priyadharsan, A.; Anand Kumar, D.; Natarajan, D.; Malafaia, G. Eco-friendly approach for ZnO nanoparticles synthesis and evaluation of its possible antimicrobial, larvicidal and photocatalytic applications. Sustain. Mater. Technol. 2023, 36, e00597. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Ma, T.; Liang, Y.; Huo, Z.; Yang, F. Synthesis of Zinc Oxide Nanoparticles and Their Applications in Enhancing Plant Stress Resistance: A Review. Agronomy 2023, 13, 3060. [Google Scholar] [CrossRef]
- Ohiduzzaman, M.; Khan, M.; Khan, K.; Paul, B. Biosynthesis of silver nanoparticles by banana pulp extract: Characterizations, antibacterial activity, and bioelectricity generation. Heliyon 2024, 10, e25520. [Google Scholar] [CrossRef]
- Villagrán, Z.; Anaya-Esparza, L.M.; Velázquez-Carriles, C.A.; Silva-Jara, J.M.; Ruvalcaba-Gómez, J.M.; Aurora-Vigo, E.F.; Rodríguez-Lafitte, E.; Rodríguez-Barajas, N.; Balderas-León, I.; Martínez-Esquivias, F. Plant-Based Extracts as Reducing, Capping, and Stabilizing Agents for the Green Synthesis of Inorganic Nanoparticles. Resources 2024, 13, 70. [Google Scholar] [CrossRef]
- Al-Darwesh, M.Y.; Ibrahim, S.S.; Mohammed, M.A. A Review on Plant Extract Mediated Green Synthesis of Zinc oxide Nanoparticles and Their biomedical Applications. Results Chem. 2024, 7, 101368. [Google Scholar] [CrossRef]
- Bairwa, P.; Kumar, N.; Devra, V.; Abd-Elsalam, K.A. Nano-Biofertilizers Synthesis and Applications in Agroecosystems. Agrochemicals 2023, 2, 118–134. [Google Scholar] [CrossRef]
- Easwaran, C.; Moorthy, G.; Christopher, S.R.; Mohan, P.; Marimuthu, R.; Koothan, V.; Nallusamy, S. Nano hybrid fertilizers: A review on the state of the art in sustainable agriculture. Sci. Total Environ. 2024, 929, 172533. [Google Scholar] [CrossRef] [PubMed]
- Garg, D.; Sridhar, K.; Inbaraj, B.S.; Chawla, P.; Tripathi, M.; Sharma, M. Nano-Biofertilizer Formulations for Agriculture: A Systematic Review on Recent Advances and Prospective Applications. Bioengineering 2023, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Nongbet, A.; Mishra, A.K.; Mohanta, Y.K.; Mahanta, S.; Ray, M.K.; Khan, M.; Baek, K.H.; Chakrabartty, I. Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. Plants 2022, 11, 2587. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.; Pathania, D.; Damathia, B.; Raizada, P.; Rustagi, S.; Singh, P.; Rani, G.M.; Chaudhary, V. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. Environ. Res. 2023, 235, 116456. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Kumar, R.; Beniwal, V. Biogenic synthesis of nanoparticles for sustainable crop production: A review. Nanobioletters 2023, 12, 10. [Google Scholar]
- Matinise, N.; Fuku, X.G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.J.A.S.S. ZnO nanoparticles via Moringa oleifera greensynthesis: Physical properties & mechanism of formation. Appl. Surf. Sci. 2017, 406, 339–347. [Google Scholar]
- Hassan, D.; Khalil, A.T.; Saleem, J.; Diallo, A.; Khamlich, S.; Shinwari, Z.K.; Maaza, M. Biosynthesis of purehematite phase magnetic iron oxide nanoparticles using foralextracts of Callistemon viminalis (bottlebrush): Their physicalproperties and novel biological applications. Artifcial Cells Nanomed. Biotechnol. 2018, 46, 693–707. [Google Scholar] [CrossRef]
- Alnehia, A.; Al-Sharabi, A.; Al-Odayni, A.B.; Al-Hammadi, A.H.; Al-Ostoot, F.H.; Saeed, W.S.; Abduh, N.A.; Alrahlah, A. Lepidium sativum Seed Extract-Mediated Synthesis of Zinc Oxide Nanoparticles: Structural, Morphological, Optical, Hemolysis, and Antibacterial Studies. Bioinorg. Chem. Appl. 2023, 2023, 1–11. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Chemical constituents and pharmacological effects of Lepidium sativum—A review. Int. J. Curr. Pharm. Res. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Alnehia, A.; Al-Sharabi, A.; Al-Hammadi, A.-B.; Al-Odayni, W.; Saeed, S.; Alrahlah, A. Structural, optical, and bio-activity properties of silver-doped zinc sulfde nanoparticlessynthesized using plectranthus barbatus leaf extract. J. Chem. 2023, 10, 1399703. [Google Scholar]
- Abdelbaky, A.S.; Mohamed, A.M.H.A.; Sharaky, M.; Mohamed, N.A.; Diab, Y.M. Green approach for the synthesis of ZnO nanoparticles using Cymbopogon citratus aqueous leaf extract: Characterization and evaluation of their biological activities. Chem. Biol. Technol. Agric. 2023, 10, 63. [Google Scholar] [CrossRef]
- AlHarethi, A.A.; Abdullah, Q.Y.; AlJobory, H.J.; Anam, A.M.; Arafa, R.A.; Farroh, K.Y. Zinc oxide and copper oxide nanoparticles as a potential solution for controlling Phytophthora infestans, the late blight disease of potatoes. Discov. Nano 2024, 19, 105. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.R.; Granadeiro, C.M.; Leite, A.; Pereira, E.; Teixeira, P.; Poças, F. Optimizing Antimicrobial Efficacy: Investigating the Impact of Zinc Oxide Nanoparticle Shape and Size. Nanomaterials 2024, 14, 638. [Google Scholar] [CrossRef] [PubMed]
- Madhumitha, G.; Fowsiya, J.; Gupta, N.; Kumar, A.; Singh, M. Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel-mediated ZnO nanoparticles. J. Phys. Chem. Solids 2018, 127, 43–51. [Google Scholar] [CrossRef]
- Shinn, E.J.; Tajkhorshid, E. Generating Concentration Gradients across Membranes for Molecular Dynamics Simulations of Periodic Systems. Int. J. Mol. Sci. 2024, 25, 3616. [Google Scholar] [CrossRef]
- Paarakh, M.P.; Jose, P.A.; Setty, C.M.; Peterchristoper, G.V. Release Kinetics—Concepts And Applications. Int. J. Pharm. Res. Technol. 2018, 10, 10–20. [Google Scholar]
- Lavrentev, F.V.; Shilovskikh, V.V.; Alabusheva, V.S.; Yurova, V.Y.; Nikitina, A.A.; Ulasevich, S.A.; Skorb, E.V. Diffusion-Limited Processes in Hydrogels with Chosen Applications from Drug Delivery to Electronic Components. Molecules 2023, 28, 5931. [Google Scholar] [CrossRef]
- Zhu, W.; Long, J.; Shi, M. Release Kinetics Model Fitting of Drugs with Different Structures from Viscose Fabric. Materials 2023, 16, 3282. [Google Scholar] [CrossRef]
- Chen, J.; Wei, X. Controlled-Release Fertilizers as a Means to Reduce Nitrogen Leaching and Runoff in Container-Grown Plant Production. In Nitrogen in Agriculture—Updates; Intech: Rijeka, Croatia, 2018. [Google Scholar]
- Govil, S.; Van Duc Long, N.; Escribà-Gelonch, M.; Hessel, V. Controlled-release fertiliser: Recent developments and perspectives. Ind. Crops Prod. 2024, 219, 119160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khane, Y.; Hafsi, Z.; Fenniche, F.; Aouf, D.; Laib, M.; Gagi, A.; Khane, S. Green Synthesis of Zinc Oxide Nanoparticles Using Lepidium sativum Seed Extract Embedded in Sodium Alginate Matrix for Efficient Slow-Release Biofertilizers. Eng. Proc. 2024, 67, 35. https://doi.org/10.3390/engproc2024067035
Khane Y, Hafsi Z, Fenniche F, Aouf D, Laib M, Gagi A, Khane S. Green Synthesis of Zinc Oxide Nanoparticles Using Lepidium sativum Seed Extract Embedded in Sodium Alginate Matrix for Efficient Slow-Release Biofertilizers. Engineering Proceedings. 2024; 67(1):35. https://doi.org/10.3390/engproc2024067035
Chicago/Turabian StyleKhane, Yasmina, Zoulikha Hafsi, Fares Fenniche, Djaber Aouf, Marwa Laib, Abdelkrim Gagi, and Sofiane Khane. 2024. "Green Synthesis of Zinc Oxide Nanoparticles Using Lepidium sativum Seed Extract Embedded in Sodium Alginate Matrix for Efficient Slow-Release Biofertilizers" Engineering Proceedings 67, no. 1: 35. https://doi.org/10.3390/engproc2024067035
APA StyleKhane, Y., Hafsi, Z., Fenniche, F., Aouf, D., Laib, M., Gagi, A., & Khane, S. (2024). Green Synthesis of Zinc Oxide Nanoparticles Using Lepidium sativum Seed Extract Embedded in Sodium Alginate Matrix for Efficient Slow-Release Biofertilizers. Engineering Proceedings, 67(1), 35. https://doi.org/10.3390/engproc2024067035