Recent Trends in Azeotropic Mixture Separation: A Comprehensive Review †
Abstract
:1. Introduction
2. Azeotropic Distillation
3. Membrane-Based Separation Techniques
3.1. Membrane Distillation
3.2. Pervaporation
3.3. Hybrid Separation
3.3.1. Hybrid Separation Scheme
3.3.2. Distillation with Pervaporation
3.3.3. Pervaporation with Vapor Permeation
4. Limitations in Azeotropic Mixture Separation Techniques
4.1. Entrainer Selection and Process Optimization
- Form an azeotrope with one component with a different boiling point;
- Be easily separated from the desired product after distillation;
- Be chemically inert and non-corrosive to avoid equipment damage;
- Be cost-effective.
4.2. Energy Consumption
4.3. Scale-Up Challenges
4.4. Membrane Fouling
4.5. Economic Considerations
4.6. Environmental Impact
5. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Li, X.; Li, G.; Zhu, Z.; Wang, Y.; Xu, D. Determination of an optimum entrainer for extractive distillation based on an isovolatility curve at different pressures. Sep. Purif. Technol. 2018, 201, 79–95. [Google Scholar] [CrossRef]
- Ramalingam, A.; Gurunathan, R.; Nagarajan, P. Investigation of potential azeotrope breakers using DFT and COSMO approach. ACS Omega 2020, 5, 16885–16900. [Google Scholar] [CrossRef] [PubMed]
- Nuchteera, I.; Thirasak, P.; Chavagorn, M.; Thanyalak, C.; Kitipat, S. Cyclopentane Purification from Multicomponent Azeotropic Mixtures. In 30th European Symposium on Computer Aided Chemical Engineering, 1st ed.; Pierucci, S., Manenti, F., Bozzano, G., Manca, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 48, pp. 277–282. [Google Scholar] [CrossRef]
- Li, C.; Zhong, L.; Wang, L.; Sun, D.; Li, Y.; Cui, P.; Shan, B.; Zhu, Z.; Li, X. Process design and multi-objective optimization of efficient heat utilization distillation based on the influence of pressure and entrainer flow on separation performance. J. Clean. Prod. 2022, 379, 134848. [Google Scholar] [CrossRef]
- Fan, Z.; Tang, K.; Xu, Z.; Zhang, L.; Zhang, G. Highly efficient membrane-based techniques in separation. IOP Conf. Ser. Earth Environ. Sci. 2018, 208, 012050. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, L. Research progress on azeotropic distillation technology. Adv. Chem. Eng. Sci. 2019, 9, 333–342. [Google Scholar] [CrossRef]
- Osman, A.; Chen, Z.; Elgarahy, A.; Farghali, M.; Mohamed, I.; Priya, A.; Hawash, H.; Yap, P. Membrane technology for energy saving: Principles, techniques, applications, challenges, and prospects. Adv. Energy Sustain. Res. 2024, 5, 2400011. [Google Scholar] [CrossRef]
- Ding, X.; Wang, X.; Du, P.; Tian, Z.; Chen, J. Prediction of new distillation-membrane separation integrated process with potential in industrial application. Processes 2021, 9, 318. [Google Scholar] [CrossRef]
- Banjerdteerakul, K.; Peng, H.; Li, K. Covalent organic frameworks based membranes for separation of azeotropic solvent mixtures by pervaporation. J. Membr. Sci. 2023, 678, 121679. [Google Scholar] [CrossRef]
- Vooradi, R.; Patnaikuni, V.S.; Tula, A.K.; Anne Sarath, B.; Eden, M.R.; Gani, R. Hybrid separation scheme for azeotropic mixtures: Sustainable design methodology. Chem. Eng. Trans. 2018, 69, 637–649. [Google Scholar] [CrossRef]
- Khalid, A.; Aslam, M.; Oyyum, M.A.; Faisal, A.; Khan, A.L.; Ahmed, F.; Lee, M.; Kim, J.; Jang, N.; Chang, I.S.; et al. Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renew. Sustain. Energy Rev. 2019, 105, 427–443. [Google Scholar] [CrossRef]
- Gomey, A.; Tripathi, M.; Haider, M.; Kumar, R. Comparative analysis of isopropyl alcohol dehydration using ionic liquids and deep eutectic solvent. J. Ion. Liq. 2023, 3, 100069. [Google Scholar] [CrossRef]
- Low, Z.N.; Wang, H. Challenges in membrane-based liquid phase separations. Green Chem. Eng. 2021, 2, 3–13. [Google Scholar] [CrossRef]
- Waltermann, T.; Grueters, T.; Muenchrath, D.; Skiborowski, M. Efficient optimization-based design of energy-integrated azeotropic distillation processes. Comp. Chem. Eng. 2020, 133, 106676. [Google Scholar] [CrossRef]
- Chen, J.; Ye, Q.; Liu, T.; Xia, H.; Feng, S. Improving the performance of heterogeneous azeotropic distillation via self-heat recuperation technology. Chem. Eng. Res. Des. 2019, 141, 516–528. [Google Scholar] [CrossRef]
- Kong, Z.Y.; Yang, A.; Tsai, C.; Adi, V.; Saptoro, A.; Sunarso, J. Design and optimization of hybrid-reactive-extractive distillation for ternary azeotropic separation: A case considering the effect of side reactions. Ind. Eng. Chem. Res. 2023, 62, 10601–10610. [Google Scholar] [CrossRef]
General Separation Methods | Specific Technique/s | Separation Mechanisms | Reference |
---|---|---|---|
Azeotropic Distillation | Heterogeneous Azeotropic Distillation | Entrainer (solvent or mass separating agent) | [2] |
Membrane-based Techniques | Membrane Distillation | Temperature gradient across a hydrophobic membrane | [6] |
Pervaporation | Non-porous membranes | [7] | |
Hybrid Separation Scheme | Combination of two or more separation methods | [9] | |
Distillation with Pervaporation | Integration of pervaporation for concentration of the azeotrope upstream of distillation | [12] | |
Pervaporation with Vapor Permeation | Load reduction on subsequent vapor permeation steps through a two-stage process | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortel, C.; Flordeliza, K.O.; Galvez, S.R.A.; Magalong, M.A.; Mendoza, T.M.G.; Rubi, R.V.C. Recent Trends in Azeotropic Mixture Separation: A Comprehensive Review. Eng. Proc. 2024, 67, 56. https://doi.org/10.3390/engproc2024067056
Cortel C, Flordeliza KO, Galvez SRA, Magalong MA, Mendoza TMG, Rubi RVC. Recent Trends in Azeotropic Mixture Separation: A Comprehensive Review. Engineering Proceedings. 2024; 67(1):56. https://doi.org/10.3390/engproc2024067056
Chicago/Turabian StyleCortel, Christel, Kristine Oira Flordeliza, Shayne Ruzzel A. Galvez, Maria Angeline Magalong, Trisha Mae G. Mendoza, and Rubi Vicente C. Rubi. 2024. "Recent Trends in Azeotropic Mixture Separation: A Comprehensive Review" Engineering Proceedings 67, no. 1: 56. https://doi.org/10.3390/engproc2024067056
APA StyleCortel, C., Flordeliza, K. O., Galvez, S. R. A., Magalong, M. A., Mendoza, T. M. G., & Rubi, R. V. C. (2024). Recent Trends in Azeotropic Mixture Separation: A Comprehensive Review. Engineering Proceedings, 67(1), 56. https://doi.org/10.3390/engproc2024067056