Approaches to Improve the Bioleaching of Arsenopyrite Flotation Concentrate with Acidithiobacillus ferrooxidans: A Comparison of Two Strains of Different Origin †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microorganisms
2.3. Identification of the Strain ShA-GNK by Molecular Methods
2.4. Analyses of Genomes and Genes
2.5. Bench Scale Experiments on the Bioleaching Arsenopyrite Flotation Concentrate (AFC)
2.6. Experiments on the Resistance the Strains to Heavy Metals
2.7. Chemical Analyses
2.8. Statistical Analyses
3. Results and Discussion
3.1. Identification and Relationships of the Strain ShA-GNK
3.2. Bioleaching Arsenopyrite Flotation Concentrate (AFC)
3.3. Bioleaching Arsenopyrite Flotation Concentrate (AFC) with Formate Supplementation
3.4. Resistance to Arsenic Compounds and Its Genetic Basis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Breed, A.W.; Dempers, C.J.N.; Hansford, G.S. Studies on the bioleaching of refractory concentrates. J. S. Afr. IMM 2000, 100, 389–398. Available online: https://www.saimm.co.za/Journal/v100n07p389.pdf (accessed on 14 May 2024).
- Abashina, T.; Vainshtein, M. Current trends in metal biomining with a focus on genomics aspects and attention to arsenopyrite leaching—A review. Microorganisms 2023, 11, 186. [Google Scholar] [CrossRef]
- Deng, S.; Gu, G.; Wu, Z.; Xu, X. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms. Chemosphere 2017, 185, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Yachkula, A.; Rozova, O.; Abashina, T.; Vainshtein, M.; Grouzdev, D.; Bulaev, A. Attempts to stimulate leaching activity of Acidithiobacillus ferrooxidans strain TFBk. Minerals 2022, 12, 1051. [Google Scholar] [CrossRef]
- Li, S.-P.; Guo, N.; Wu, H.-Y.; Qiu, G.-Z.; Liu, X.-X. High efficient mixed culture screening and selected microbial community shift for bioleaching process. Trans. Nonferrous Met. Soc. China 2011, 21, 1383–1387. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, S.; Tong, Y.; Yang, H. Adaptive mechanism of Acidithiobacillus thiooxidans CCTCC M 2012104 under stress during bioleaching of low-grade chalcopyrite based on physiological and comparative transcriptomic analysis. J. Ind. Microbiol. Biotechnol. 2019, 46, 1643–1656. [Google Scholar] [CrossRef] [PubMed]
- Yuehua, H.; Guanzhou, Q.; Jun, W.; Dianzuo, W. The effect of silver-bearing catalysts on bioleaching of chalcopyrite. Hydrometallurgy 2002, 64, 81–88. [Google Scholar] [CrossRef]
- Hernández, P.; Dorador, A.; Martínez, M.; Toro, N.; Castillo, J.; Ghorbani, Y. Use of seawater/brine and caliche’s salts as clean and environmentally friendly sources of chloride and nitrate ions for chalcopyrite concentrate leaching. Minerals 2020, 10, 477. [Google Scholar] [CrossRef]
- Ren, Z.; Krishnamoorthy, P.; Sanchez, P.Z.; Asselin, E.; Dixon, D.C.; Mora, N. Catalytic effect of ethylene thiourea on the leaching of chalcopyrite. Hydrometallurgy 2020, 196, 105410. [Google Scholar] [CrossRef]
- Abashina, T.N.; Yachkula, A.A.; Vainshtein, M.B. Prevention of sulfuric acid pollution: Intensification of metal leaching with organic acids. IOP Conf. Ser. Earth Environ. Sci. 2022, 981, 032029. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, Y.-L.; Li, H.-R. Enhancement of bio-oxidation of refractory arsenopyritic gold ore by adding pyrolusite in bioleaching system. Trans. Nonferrous Met. Soc. China 2016, 26, 2479–2484. [Google Scholar] [CrossRef]
- Abashina, T.; Yachkula, A.; Kaparullina, E.; Vainshtein, M. Intensification of nickel bioleaching with neutrophilic bacteria Guyparkeria halophila as an approach to limitation of sulfuric acid pollution. Microorganisms 2021, 9, 2461. [Google Scholar] [CrossRef] [PubMed]
- Aston, J.E.; Apel, W.A.; Lee, B.D.; Peyton, B.M. Growth effects and assimilation of organic acids in chemostat and batch cultures of Acidithiobacillus caldus. World J. Microbiol. Biotechnol. 2011, 27, 153–161. [Google Scholar] [CrossRef]
- Bulaev, A.; Nechaeva, A.; Elkina, Y.; Melamud, V. Effect of carbon sources on pyrite-arsenopyrite concentrate bio-oxidation and growth of microbial population in stirred tank reactors. Microorganisms 2021, 9, 2350. [Google Scholar] [CrossRef]
- Pronk, T.; Meijer, W.M.; Hazeu, W.; van Dijken, J.P.; Bos, P.; Kuenen, J.G. Growth of Thiobacillus ferrooxidans on formic acid. Appl. Environ. Microbiol. 1991, 57, 2057–2062. [Google Scholar] [CrossRef]
- Pronk, J.T.; van Dijken, J.P.; Bos, P.; Kuenen, J.G. High Yield Method of Growing Thiobacillus ferrooxidans on Formate. Patent of The South Africa Republic ZA 923117B, 6 May 1991. [Google Scholar]
- Kelly, D.P.; Wood, A.P.; Gottschal, J.C.; Kuenen, J.G. Autotrophic metabolism of formate by Thiobacillus Strain A2. J. Gen. Microbiol. 1979, 114, 1–13. [Google Scholar] [CrossRef]
- Tuttle, H.; Dugan, P.R. Inhibition of growth, and shining in Thiobacillus ferrooxidans by simple organic composites. Can. J. Microbiol. 1976, 22, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.Y.; Wong, J.W. Identification of inhibition substance affected by bioleaching of heavy metals from anaerobically digested sewage sludge. Environ. Sci. Technol. 2004, 38, 2934–2939. [Google Scholar] [CrossRef]
- Ren, W.-X.; Li, P.-J.; Zheng, L.; Fan, S.-X.; Verhozina, V.A. Effects of dis-solved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans. J. Hazard. Mater. 2009, 162, 17–22. [Google Scholar] [CrossRef]
- Van de Peer, Y.; DeWachter, R. TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Bioinformatics 1994, 10, 569–570. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40, D109–D114. [Google Scholar] [CrossRef] [PubMed]
- Páez-Espino, D.; Tamames, J.; de Lorenzo, V.; Cánovas, D. Microbial responses to environmental arsenic. Biometals 2009, 22, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, Z.; Meng, D.; Liu, X.; Li, X.; Zhang, M.; Tao, J.; Gu, Y.; Zhong, S.; Yin, H. Comparative genomic analysis reveals the distribution, organization, and evolution of metal resistance genes in the genus Acidithiobacillus. Appl. Environ. Microbiol. 2019, 85, e02153-18. [Google Scholar] [CrossRef] [PubMed]
Element | Content, mg/kg |
---|---|
Arsenic | 77,279 |
Iron | 24,740 |
Copper | 953 |
Nickel | 150 |
Gold | 100 |
Sulfate, Concentration in the Leaching Solution | Initial | Final | ||
---|---|---|---|---|
Chemical Oxidation (Sterile Blank) | Chemical and Biological Oxidation without Formate | Chemical and Biological Oxidation with Formate | ||
μS/cm·sec (peak area) | 152.01 | 183.61 | 729.93 | 1058.42 |
mg/L per 1 kg AFC | 36,600 | 44,400 | 176,200 | 255,495 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abashina, T.; Yachkula, A.; Shaikin, A.; Vainshtein, M. Approaches to Improve the Bioleaching of Arsenopyrite Flotation Concentrate with Acidithiobacillus ferrooxidans: A Comparison of Two Strains of Different Origin. Eng. Proc. 2024, 67, 60. https://doi.org/10.3390/engproc2024067060
Abashina T, Yachkula A, Shaikin A, Vainshtein M. Approaches to Improve the Bioleaching of Arsenopyrite Flotation Concentrate with Acidithiobacillus ferrooxidans: A Comparison of Two Strains of Different Origin. Engineering Proceedings. 2024; 67(1):60. https://doi.org/10.3390/engproc2024067060
Chicago/Turabian StyleAbashina, Tatiana, Alyona Yachkula, Artem Shaikin, and Mikhail Vainshtein. 2024. "Approaches to Improve the Bioleaching of Arsenopyrite Flotation Concentrate with Acidithiobacillus ferrooxidans: A Comparison of Two Strains of Different Origin" Engineering Proceedings 67, no. 1: 60. https://doi.org/10.3390/engproc2024067060
APA StyleAbashina, T., Yachkula, A., Shaikin, A., & Vainshtein, M. (2024). Approaches to Improve the Bioleaching of Arsenopyrite Flotation Concentrate with Acidithiobacillus ferrooxidans: A Comparison of Two Strains of Different Origin. Engineering Proceedings, 67(1), 60. https://doi.org/10.3390/engproc2024067060