Microwave-Assisted Condensation of Two Potential Antibacterial Pharmacophores (Sulfonamide and Oxazolidinone) †
Abstract
:1. Introduction
2. Results and Discussion
3. General Procedure for the Synthesis of Derivative Oxazolidinone-Sulfonamide
3.1. Synthesis of 3-(2-Chloroacetyl) Oxazolidinone
3.2. Synthesis of Oxazolidinone-Sulfonamide
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varma, R.S. Solvent-free organic syntheses, using supported reagents and microwave irradiation. Green Chem. 1999, 1, 43. [Google Scholar] [CrossRef]
- Wang, R.; Lub, X.X.; Yu, X.Q.; Shi, L.; Suna, Y. Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. J. Mol. Catal. A Chem. 2007, 266, 198. [Google Scholar] [CrossRef]
- Youssef, M.M.; Amin, M.A. Microwave Assisted Synthesis of Some New Heterocyclic Spiro-Derivatives with Potential Antimicrobial and Antioxidant Activity. Molecules 2010, 15, 8827. [Google Scholar] [CrossRef] [PubMed]
- Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—A review. Tetrahedron 2001, 57, 9225. [Google Scholar] [CrossRef]
- Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250. [Google Scholar] [CrossRef] [PubMed]
- Bouchareb, F.; Berredjem, M.; Dehmchi, D.A.; Kadri, R.; Kadri, M.; Ferkous, H.; Mansouri, A.; Bouyegh, S.; Ahmed, S.A.; Ben Hadda, T.; et al. Synthesis, characterization, DFT/M06 studies, NBO, QTAIM and RDG analyses of new copper (II) complexes with bis-phosphonamide obtained under microwave irradiation. J. Mol. Struct. 2023, 1294, 136503. [Google Scholar] [CrossRef]
- Patil, R.C.; Khiratkar, N.M.; Ahmed, S.; Jamalis, J.; Hasan, A.H.; Berredjem, M.; Sarkar, M.A.; Kawsar, S.M.A.; Ajmal, R.; Bhat, A.R. A safe and new strategy for N-arylation of 2, 4-thiazolidinediones via microwave irradiation using base catalyst K2 CO3 in DMF. React. Chem. Eng. 2024, 9, 842. [Google Scholar] [CrossRef]
- Bahadi, R.; Berredjem, M.; Benzaid, C.; Bouchareb, F.; Dekir, A.; Djendi, M.L.; Ibrahim-Ouali, M.I.; Boussaker, M.; Bouacida, S.; Bhat, A.R.; et al. Efficient synthesis, crystallography study, antibacterial/antifungal activities, DFT/ADMET studies and molecular docking of novel α-aminophosphonates. J. Mol. Struct. 2023, 1289, 135849. [Google Scholar] [CrossRef]
- Ahmed, S.; Ajmal, R.; Bhat, A.R.; Rahiman, A.K.; Dongre, R.S.; Hasan, A.H.; Niranjan, V.; Lavanya, C.; Sheikhe, S.A.; Jamalis, J.; et al. Green synthesis, antibacterial and antifungal evaluation of new thiazolidine-2,4-dione derivatives: Molecular dynamic simulation, POM study and identification of antitumor pharmacophore sites. J. Biomol. Struct. Dyn. 2023, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Belhani, B.; Aissaoui, M.; K’tir, H.; Khald, T.; Khattabi, L.; Laichi, Y.; Boulebnane, A.; Berredjem, M.; Djilani, S. A novel, rapid and eco-sustainable approach for the synthesis of novel benzothiazole derivatives as potent urease inhibitors: Biological assay, molecular docking, dynamic simulation, DFT and ADMET studies. J. Mol. Struct. 2023, 1293, 136221. [Google Scholar] [CrossRef]
- Nasir-Baig, R.B.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev. 2012, 41, 1559. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; You., Q.D. An efficient and solvent-free one-pot synthesis of dihydro pyrimidinones under microwave irradiation. Chin. Chem. Lett. 2007, 18, 647. [Google Scholar] [CrossRef]
- Bouzina, A.; Berredjem, M.; Belhani, B.; Bouacida, S.; Marminon, C.; Le Borgne, M.; Bouaziz, Z. Microwave-accelerated multicomponent synthesis and X-ray characterization of novel benzothiadiazinone dioxide derivatives, analogues of Monastrol. Chem. Intermed. 2021, 47, 1359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouasla, R.; Berredjem, M. Microwave-Assisted Condensation of Two Potential Antibacterial Pharmacophores (Sulfonamide and Oxazolidinone). Eng. Proc. 2024, 67, 64. https://doi.org/10.3390/engproc2024067064
Bouasla R, Berredjem M. Microwave-Assisted Condensation of Two Potential Antibacterial Pharmacophores (Sulfonamide and Oxazolidinone). Engineering Proceedings. 2024; 67(1):64. https://doi.org/10.3390/engproc2024067064
Chicago/Turabian StyleBouasla, Radia, and Malika Berredjem. 2024. "Microwave-Assisted Condensation of Two Potential Antibacterial Pharmacophores (Sulfonamide and Oxazolidinone)" Engineering Proceedings 67, no. 1: 64. https://doi.org/10.3390/engproc2024067064
APA StyleBouasla, R., & Berredjem, M. (2024). Microwave-Assisted Condensation of Two Potential Antibacterial Pharmacophores (Sulfonamide and Oxazolidinone). Engineering Proceedings, 67(1), 64. https://doi.org/10.3390/engproc2024067064