Weather Monitoring and Emergency IoT System in Muang-On Cave, Northern Thailand †
Abstract
:1. Introduction
2. System Development
2.1. Testing Area and Cave Description
2.2. Weather Monitoring and Emergency Rescue Request Detecting Stations
2.3. Data Transfer Method
2.4. Data Display and Database
Programming Languages | Packages | Description |
---|---|---|
C | Apache2 (Ubuntu operating system) [39] | Open-source software: served as the main web service for hosting and operating the web application. |
Python, HTML, CSS, JavaScript | Flask [40] | Python package: functioned as a web framework, managing access channels for web applications. |
Python | SQLAlchemy [41] | Python package: used to connect, commit, and retrieve data from an SQL database hosted on Apache2. |
Plotly [42] | Python package: used to create a 3D interactive map displaying monitored data and the location of rescue requests. | |
timeago [43] | Python package: used as a tool to transform the timestamp of the latest sensor-measured data into humanized text. | |
JavaScript | AJAX [44] | JavaScript tool: for smoothly updating data represented on an interactive map. |
3. Results and Discussion
3.1. Weather Monitoring Display
3.1.1. Temperature and Humidity
3.1.2. CO2 and TVOCs
3.2. Emergency Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kua, J.; Loke, S.W.; Arora, C.; Fernando, N.; Ranaweera, C. Internet of Things in Space: A Review of Opportunities and Challenges from Satellite-Aided Computing to Digitally-Enhanced Space Living. Sensors 2021, 21, 8117. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Carvalho, P.; Lima, S.R.; Lima, E.; Lopes, N.V. An IoT platform for production monitoring in the aerospace manufacturing industry. J. Clean. Prod. 2022, 368, 133264. [Google Scholar] [CrossRef]
- Xu, J.; Gu, B.; Tian, G. Review of agricultural IoT technology. Artif. Intell. Agric. 2022, 6, 10–22. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Kumar, M.B.V.; Jayasree, M.B.; Kiruthika, M.D. Iot based Underground Coalmine Safety System. J. Phys. Conf. Ser. 2021, 1717, 012030. [Google Scholar] [CrossRef]
- Singh, A.; Singh, U.K.; Kumar, D. IoT in mining for sensing, monitoring and prediction of underground mines roof support. In Proceedings of the 2018 4th International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 15–17 March 2018; pp. 1–5. [Google Scholar]
- Choi, M.; Sui, Y.; Lee, I.H.; Meredith, R.; Ma, Y.; Kim, G.; Blaauw, D.; Gianchandani, Y.B.; Li, T. Autonomous Microsystems for Downhole Applications: Design Challenges, Current State, and Initial Test Results. Sensors 2017, 17, 2190. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.; Rodrigues, F.; Castelo Branco, J. Sensing Technology Applications in the Mining Industry—A Systematic Review. Int. J. Environ. Res Public Health 2022, 19, 2334. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Dong, Y.; Zhang, J.; Guo, F.; Lu, Q.; Lv, B.; Wu, J. Review on Tunnel Communication Technology. Sustainability 2022, 14, 11451. [Google Scholar] [CrossRef]
- Straus, L. Convenient cavities: Some human uses of caves and rockshelters. In The Human Use of Caves; BAR Publishing: Oxford, UK, 1997; pp. 1–8. [Google Scholar]
- Buosi, C.; Pittau, P.; Paglietti, G.; Scanu, G.G.; Serra, M.; Ucchesu, M.; Tanda, G. A Human Occupation Cave During the Bronze Age: Archaeological and Palynological Applications of a Case Study in S ardinia (Western Mediterranean). Archaeometry 2015, 57, 212–231. [Google Scholar] [CrossRef]
- Chiarini, V.; Duckeck, J.; De Waele, J. A Global Perspective on Sustainable Show Cave Tourism. Geoheritage 2022, 14, 82. [Google Scholar] [CrossRef]
- Kim, S.S.; Kim, M.; Park, J.; Guo, Y. Cave Tourism: Tourists’ Characteristics, Motivations to Visit, and the Segmentation of Their Behavior. Asia Pac. J. Tour. Res. 2008, 13, 299–318. [Google Scholar] [CrossRef]
- Chunhabunyatip, P. Spiritual Tourism and Travel Decision of Naga Cave Tourists, Bueng Kan, Thailand: Roles of Social Media, Tourist Experience, Religious Belief, and Word of Mouth. KKBS J. Bus. Adm. Account. 2023, 7, 9–30. [Google Scholar]
- Audra, P.; De Waele, J.; Bentaleb, I.; Chroňáková, A.; Krištůfek, V.; D’Angeli, I.; Carbone, C.; Madonia, G.; Vattano, M.; Scopelliti, G.; et al. Guano-related phosphate-rich minerals in European caves. Int. J. Speleol. 2019, 48, 75–105. [Google Scholar] [CrossRef]
- Sokol, E.V.; Kozlikin, M.B.; Kokh, S.N.; Nekipelova, A.V.; Kulik, N.A.; Danilovsky, V.A.; Khvorov, P.V.; Shunkov, M.V. Phosphate Record in Pleistocene-Holocene Sediments from Denisova Cave: Formation Mechanisms and Archaeological Implications. Minerals 2022, 12, 553. [Google Scholar] [CrossRef]
- Oza, P. Buddhism and Spread of Religion through the Inner Nuances of Caves—A case study of Western India. SSRN 2022, ssrn.403607. [Google Scholar] [CrossRef]
- Indrawoorth, P. The archaeology of the early Buddhist kingdoms of Thailand. In Southeast Asia; Routledge: London, UK, 2023; pp. 120–148. [Google Scholar]
- Badino, G. Cave temperatures and global climatic change. Int. J. Speleol. 2004, 33, 103–113. [Google Scholar] [CrossRef]
- White, W.B. Cave sediments and paleoclimate. J. Cave Karst Stud. 2007, 69, 76–93. [Google Scholar]
- Goh, J. A literature review of medical support in cave rescue and confined space medicine–implications in urban underground space development. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Virtual, 3–4 February 2021; p. 012042. [Google Scholar]
- Dominguez-Moñino, I.; Jurado, V.; Rogerio-Candelera, M.A.; Hermosin, B.; Saiz-Jimenez, C. Airborne Fungi in Show Caves from Southern Spain. Appl. Sci. 2021, 11, 5027. [Google Scholar] [CrossRef]
- Bolger, T.; Ellis, M. An overview of caves and caving in Thailand. In Proceedings of the 2nd Asian Transkarst Conference, Lichuan, China, 6–8 November 2015; pp. 203–207. [Google Scholar]
- Singtuen, V.; Gałka, E.; Phajuy, B.; Won-In, K. Evaluation and Geopark Perspective of the Geoheritage Resources in Chiang Mai Area, Northern Thailand. Geoheritage 2019, 11, 1955–1972. [Google Scholar] [CrossRef]
- Rattanajarurak, P. Geotourism in Chiang Mai Province; Department of Mineral Resources Thailand: Bangkok, 2012; p. 39. [Google Scholar]
- Promneewat, K.; Taksavasu, T. Performance of Affordable 2D Cave Scanning Technique from LiDAR for Constructing 3D Cave Models. Adv. LiDAR 2024, 4, 1–8. [Google Scholar]
- Promneewat, K.; Taksavasu, T.; Mankhemthong, N.; Siritongkham, N. Offline Interactive Map from Hybrid App Development: A Case from Geologic Map App. In Proceedings of the 2023 27th International Computer Science and Engineering Conference (ICSEC), Samui Island, Thailand, 14–15 September 2023; pp. 331–334. [Google Scholar]
- Royal Thai Survey Department. Topography Map: Amphoe San Shi; Royal Thai Survey Department: Bangkok, Thailand, 2006. [Google Scholar]
- Kodali, R.K.; Mahesh, K.S. A low cost implementation of MQTT using ESP8266. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016; pp. 404–408. [Google Scholar]
- Salamone, F.; Chinazzo, G.; Danza, L.; Miller, C.; Sibilio, S.; Masullo, M. Low-Cost Thermohygrometers to Assess Thermal Comfort in the Built Environment: A Laboratory Evaluation of Their Measurement Performance. Buildings 2022, 12, 579. [Google Scholar] [CrossRef]
- Widhowati, A.A.; Wardoyo, A.Y.P.; Dharmawan, H.A.; Nurhuda, M.; Budianto, A. Development of a Portable Volatile Organic Compounds Concentration Measurement System Using a CCS811 Air Quality Sensor. In Proceedings of the 2021 International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 29–30 June 2021; pp. 1–5. [Google Scholar]
- Jose, J.; Sasipraba, T. Indoor air quality monitors using IOT sensors and LPWAN. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 633–637. [Google Scholar]
- Faiazuddin, S.; Lakshmaiah, M.V.; Alam, K.T.; Ravikiran, M. IoT based Indoor Air Quality Monitoring system using Raspberry Pi4. In Proceedings of the 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7 November 2020; pp. 714–719. [Google Scholar]
- ams. CCS811 Ultra-Low Power Digital Gas Sensor for Monitoring Indoor Air Quality; v1-00; Sparkfun: Niwot, CO, USA, 23 December 2016. [Google Scholar]
- Cabral, S.K.; Murphy, K. MySQL Administrator’s Bible; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Huang, Z.Q.; Chen, Y.C.; Wen, C.Y. Real-Time Weather Monitoring and Prediction Using City Buses and Machine Learning. Sensors 2020, 20, 5173. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, A.A.; Soge, A.O.; Adeleke, M.A.; Ilori, O.A. An IoT-Based Home Automation and Weather Monitoring System. Int. J. Res. Innov. Appl. Sci. 2022, 7, 26–29. [Google Scholar] [CrossRef]
- Sudo, M.A.; Santos, S.R.B.D.; Oliveira, A.M.d.; Givigi, S.N. Design and Analysis of a Low-Cost Weather Monitoring System based on Standard IoT Data Protocols. In Proceedings of the 2022 IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 25–28 April 2022; pp. 1–7. [Google Scholar]
- The Apache Software Foundation. Apache Http Server Project. Available online: https://httpd.apache.org/ (accessed on 7 May 2024).
- Pellets. Flask Documentation (3.0.x). Available online: https://flask.palletsprojects.com/en/3.0.x/ (accessed on 7 May 2024).
- Bayer, M. SQLAlchemy—The Database Toolkit for Python. Available online: https://www.sqlalchemy.org/ (accessed on 7 May 2024).
- Dash Enterprise. Plotly Python Graphing Library. Available online: https://plotly.com/python/ (accessed on 7 May 2024).
- McGeary, R. timeago—Npm. Available online: https://www.npmjs.com/package/timeago (accessed on 7 May 2024).
- OpenJS Foundation. jQuery.ajax(). Available online: https://api.jquery.com/jQuery.ajax/ (accessed on 7 May 2024).
- Perry, R.W. A review of factors affecting cave climates for hibernating bats in temperate North America. Environ. Rev. 2013, 21, 28–39. [Google Scholar] [CrossRef]
- Medina, M.J.; Antic, D.; Borges, P.A.V.; Borko, S.; Fiser, C.; Lauritzen, S.E.; Martin, J.L.; Oromi, P.; Pavlek, M.; Premate, E.; et al. Temperature variation in caves and its significance for subterranean ecosystems. Sci. Rep. 2023, 13, 20735. [Google Scholar] [CrossRef]
- Mejia-Ortiz, L.; Christman, M.C.; Pipan, T.; Culver, D.C. What’s the relative humidity in tropical caves? PLoS ONE 2021, 16, e0250396. [Google Scholar] [CrossRef]
- Occupational Safety and Health Administration. Carbon Dioxide; Occupational Safety and Health Administration: Washington, DC, USA, 2024. [Google Scholar]
- Baudet, A.; Baures, E.; Blanchard, O.; Le Cann, P.; Gangneux, J.P.; Florentin, A. Indoor Carbon Dioxide, Fine Particulate Matter and Total Volatile Organic Compounds in Private Healthcare and Elderly Care Facilities. Toxics 2022, 10, 136. [Google Scholar] [CrossRef]
- Lindberg, J.E.; Quinn, M.M.; Gore, R.J.; Galligan, C.J.; Sama, S.R.; Sheikh, N.N.; Markkanen, P.K.; Parker-Vega, A.; Karlsson, N.D.; LeBouf, R.F.; et al. Assessment of home care aides’ respiratory exposure to total volatile organic compounds and chlorine during simulated bathroom cleaning: An experimental design with conventional and “green” products. J. Occup. Environ. Hyg. 2021, 18, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, B.P.; Punia, M.; Singh, D.; Kumar, K.; Jain, V.K. Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ. Sci. Pollut. Res. Int. 2014, 21, 2240–2248. [Google Scholar] [CrossRef]
- Komarudin, M.; Sulistyanti, S.R.; Irsyad, M.; Septama, H.D.; Yulianti, T. Improving Low-Cost Carbon Dioxide Sensor Accuracy for Environmental Air Quality Monitoring Systems. In Proceedings of the 2023 International Conference on Converging Technology in Electrical and Information Engineering (ICCTEIE), Bandar Lampung, Indonesia, 25–26 October 2023; pp. 1–5. [Google Scholar]
- Varzaru, G.; Zarnescu, A.; Ungurelu, R.; Secere, M. Dismantling the confusion between the equivalent CO2 and CO2 concentration levels. In Proceedings of the 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 27–29 June 2019; pp. 1–4. [Google Scholar]
- Siagian, P.; Fernando, E. Smartphone Application as an Air Quality Monitor Using Raspberry Pi for Reducing Air Pollution. In Proceedings of the 2021 2nd International Conference on Innovative and Creative Information Technology (ICITech), Salatiga, Indonesia, 23–25 September 2021; pp. 179–183. [Google Scholar]
- Pietraru, R.N.; Nicolae, M.; Mocanu, S.; Merezeanu, D.M. Easy-to-Use MOX-Based VOC Sensors for Efficient Indoor Air Quality Monitoring. Sensors 2024, 24, 2501. [Google Scholar] [CrossRef]
- William, M.C. 85 °C/85% RH Accelerated Life Test Impact on Humidity Sensors; Texas Instruments: Dallas, TX, USA, 2022; p. 5. [Google Scholar]
Types | Model | Quantity | Cost in Total (USD) |
---|---|---|---|
Microcontroller | ESP8266 | 3 | 15 |
Temperature and Humidity Sensor | DHT22 | 1 | 3 |
Cabon dioxide and TVOC Sensor | CCS811 | 1 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promneewat, K.; Taksavasu, T. Weather Monitoring and Emergency IoT System in Muang-On Cave, Northern Thailand. Eng. Proc. 2024, 67, 7. https://doi.org/10.3390/engproc2024067007
Promneewat K, Taksavasu T. Weather Monitoring and Emergency IoT System in Muang-On Cave, Northern Thailand. Engineering Proceedings. 2024; 67(1):7. https://doi.org/10.3390/engproc2024067007
Chicago/Turabian StylePromneewat, Khomchan, and Tadsuda Taksavasu. 2024. "Weather Monitoring and Emergency IoT System in Muang-On Cave, Northern Thailand" Engineering Proceedings 67, no. 1: 7. https://doi.org/10.3390/engproc2024067007
APA StylePromneewat, K., & Taksavasu, T. (2024). Weather Monitoring and Emergency IoT System in Muang-On Cave, Northern Thailand. Engineering Proceedings, 67(1), 7. https://doi.org/10.3390/engproc2024067007