The Green Synthesis and Phytochemical Properties of Silver Nanoparticles Obtained from Eggplant †
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of the Aqueous Extract of Eggplant Peels
2.2. Preparation of Silver Nanoparticles
2.3. Characterization of the Green Synthesis of Silver Nanoparticles
2.3.1. Color Change Method
2.3.2. UV-Visible Spectral Analysis
2.4. Oxidant—Antioxidant System
2.4.1. Total Antioxidant Capacity Assay (TAC)
- Principle
- Reagents
- 1.
- Copper (I) chloride solution at a concentration of 10−2 M;
- 2.
- Ammonium acetate (NH4Ac) buffer, pH = 7.0;
- 3.
- Neocuproine (Nc) (2,9-dimethyl-1,1-phenanthroline) solution at a concentration of 7.5 × 10−3 M.
- 4.
- Standard uric acid solution (1 mM).
- Procedure
- Calculation
2.4.2. Determination of Antioxidant Activity
2,2-Diphenyl-1-picrylhydrazyl
3. Results and Discussion
3.1. Green Synthesis of Silver Nanoparticles for Solanum melongena
3.2. Optimization Conditions for the Synthesis of AgNPs
3.3. Total Antioxidant Capacity Assay (TAC)
3.4. Determination of Antioxidant Activity: The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Inhibition Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, M.P.; Jayalakshmi, K.; Rindhe, G.G. Antibacterial activity of Ocmium species and their phytochemical and antioxidant potential. Int. J. Mol. Sci. 2012, 4, 302–307. [Google Scholar]
- Koche, D.; Shirsat, R.; Imran, S.; Bhadange, D.G. Phytochemical screening of eight traditionally used ethnomedicinal plants from akola district (MS) India. Int. J. Pharma Bio Sci. 2010, 1, 253–256. [Google Scholar]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, N.C.; Basson, A.K.; Ntombela, Z.G.; Dlamini, N.G.; Pullabhotla, R.V.S.R. Green synthesis, characterization and application of silver nanoparticles using bioflocculant: A review. Bioengineering 2024, 11, 492. [Google Scholar] [CrossRef]
- Makarov, V.V. “Green” nanotechnologies of synthesis of metal nanoparticles using plants. Acta Naturae 2014, 6, 35–44. Available online: https://actanaturae.ru/2075-8251/article/view/10554 (accessed on 15 January 2016). [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Atapour, A.; Amani, A.M.; Savar Dashtaki, A.; Arjmand, O. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S3), 855–872. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Ali, J.; Bashir, S. Optimization and effects of different reaction conditions for the bioinspired synthesis of silver nanoparticles using hippophae rhamnoides Linn. Leaves Aqueous Extract. World Appl. Sci. J. 2013, 22, 836–843. [Google Scholar]
- Peter, K.V. Handbook of Herbs and Spices; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Alok, K.G.; Biswajit, J. Green synthesis and characterization of silver nanoparticles using Eugenia roxburghi DC extract and activity against biofilm- producing bacteria. Sci. Rep. 2022, 12, 8383. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Lalhminghlui, K.; Lagetia, G.C. Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth In Vitro. Future Sci. OA 2018, 4, FSO272. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, K.; Vadivukkarasi, S. Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (jacq.) cogn. Food Sci. Hum. Wellness 2015, 4, 42–46. [Google Scholar] [CrossRef]
- Cömert, E.D.; Mogol, B.A.; Gökmen, V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Food Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
Reagents | Test | S.T.D | Blank |
---|---|---|---|
CuCl × H2O solution | 1000 μL | 1000 μL | 1000 μL |
Serum | 50 μL | ||
Uric acid solution | 50 μL | ||
Dist. water | 1000 μL | 1000 μL | 1050 μL |
Neocuproine (Nc) solution | 1000 μL | 1000 μL | 1000 μL |
Ammonium acetate (NHAc) buffer | 1000 μL | 1000 μL | 1000 μL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murshedi, L.D.N.; Solyanikova, I.P. The Green Synthesis and Phytochemical Properties of Silver Nanoparticles Obtained from Eggplant. Eng. Proc. 2024, 67, 72. https://doi.org/10.3390/engproc2024067072
Murshedi LDN, Solyanikova IP. The Green Synthesis and Phytochemical Properties of Silver Nanoparticles Obtained from Eggplant. Engineering Proceedings. 2024; 67(1):72. https://doi.org/10.3390/engproc2024067072
Chicago/Turabian StyleMurshedi, Lateef Dheyab Nsaif, and Inna P. Solyanikova. 2024. "The Green Synthesis and Phytochemical Properties of Silver Nanoparticles Obtained from Eggplant" Engineering Proceedings 67, no. 1: 72. https://doi.org/10.3390/engproc2024067072
APA StyleMurshedi, L. D. N., & Solyanikova, I. P. (2024). The Green Synthesis and Phytochemical Properties of Silver Nanoparticles Obtained from Eggplant. Engineering Proceedings, 67(1), 72. https://doi.org/10.3390/engproc2024067072