Synthesis, Characterization, and Photocatalytic Activity of Sb2O3 Nanoparticles: A Step towards Environmental Sustainability †
Abstract
:1. Introduction
2. Materials and Methods
Synthesis of Sb2O3 NPs
3. Results and Discussion
3.1. Characterization Tactics
3.1.1. XRD
3.1.2. SEM Analysis
3.1.3. FT-IR Analysis
3.1.4. UV-Vis Analysis
3.2. Photocatalytic Potential of Sb2O3 NPs
3.3. Quenching Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jabeen, S.; Ahmad, N.; Bala, S.; Bano, D.; Khan, T. Nanotechnology in environmental sustainability and performance of nanomaterials in recalcitrant removal from contaminated Water: A review. Int. J. Nano Dimens. 2023, 14, 1–28. [Google Scholar]
- Wang, Z.; Deb, A.; Srivastava, V.; Iftekhar, S.; Ambat, I.; Sillanpää, M. Investigation of textural properties and photocatalytic activity of PbO/TiO2 and Sb2O3/TiO2 towards the photocatalytic degradation Benzophenone-3 UV filter. Sep. Purif. Technol. 2019, 228, 115763. [Google Scholar] [CrossRef]
- Wilde, G. Structural phase transformations in nanoscale systems. Adv. Eng. Mater. 2021, 23, 2001387. [Google Scholar] [CrossRef]
- Jagannath, G.; Eraiah, B.; Gaddam, A.; Fernandes, H.; Brazete, D.; Jayanthi, K.; Krishnakanth, K.N.; Venugopal Rao, S.; Ferreira, J.M.; Annapurna, K.; et al. Structural and femtosecond third-order nonlinear optical properties of sodium borate oxide glasses: Effect of antimony. J. Phys. Chem. C 2019, 123, 5591–5602. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, C.; Geng, M.; Xu, K.; Zong, S. Effects of surface area on all-solid-stated pH sensor based on antimony electrode. IEEE Sens. J. 2019, 20, 680–688. [Google Scholar] [CrossRef]
- Chin, H.S.; Cheong, K.Y.; Razak, K.A. Review on oxides of antimony nanoparticles: Synthesis, properties, and applications. J. Mater. Sci. 2010, 45, 5993–6008. [Google Scholar] [CrossRef]
- Zia, J.; Riaz, U. Photocatalytic degradation of anti-inflammatory drug using POPD/ Sb2O3 organic-inorganic nanohybrid under solar light. J. Mater. Res. Technol. 2019, 8, 4079–4093. [Google Scholar] [CrossRef]
- Barik, P.; Bhattacharjee, A. The Integral Postulation of Inorganic Nanofiller-Derived Polymer Applications in Agriculture. In Nanofillers; CRC Press: Boca Raton, FL, USA, 2023; pp. 221–257. [Google Scholar]
- Pu, Y.; Zhao, F.; Chen, Y.; Lin, X.; Yin, H.; Tang, X. Enhanced Electrocatalytic Oxidation of Phenol by Sn2O2-Sb2O3 /GAC Particle Electrodes in a Three-Dimensional Electrochemical Oxidation System. Water 2023, 15, 1844. [Google Scholar] [CrossRef]
- Zhu, L.J.; Xue, H.; Xiao, L.R.; Chen, Q.H. Preparation and photocatalytic performance of cubic Sb2O3 nanocrystalline. Chin. J. Inorg. Chem. 2012, 28, 2165–2169. [Google Scholar]
- Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O3 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. J. Photochem. Photobiol. A Chem. 2002, 148, 85–89. [Google Scholar] [CrossRef]
- Liu, W.J.; Lin, P.Y.; Jin, H.; Xue, H.; Zhang, Y.F.; Li, Z.H. Nanocrystalline ZnSb2O6 hydrothermal synthesis, electronic structure, and photocatalytic activity. J. Mol. Catal. A Chem. 2011, 349, 80–85. [Google Scholar] [CrossRef]
- Fu, Y.H.; Xue, H.; Qin, M.; Liu, P.; Fu, X.Z.; Li, Z.H. Nanocrystalline GaSbO4 with high surface area prepared via a facile hydrothermal method and its photocatalytic activity study. J. Alloys Compd. 2012, 522, 144–148. [Google Scholar] [CrossRef]
- Li, F.; Cheng, L.; Fan, J.; Xiang, Q. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: A new insight and perspective. J. Mater. Chem. A 2021, 9, 23765–23782. [Google Scholar] [CrossRef]
- Jabeen, S.; Ganie, A.S.; Ahmad, N.; Hijazi, S.; Bala, S.; Bano, D.; Khan, T. Fabrication and studies of LaFe2O3/Sb2O3 heterojunction for enhanced degradation of Malachite green dye under visible light irradiation. Inorg. Chem. Commun. 2023, 152, 110729. [Google Scholar] [CrossRef]
- Zhu, S.; Yang, X.; Li, T.; Li, F.; Cao, W. Phase and morphology controllable synthesis of superhydrophobic Sb2O3 via a solvothermal method. J. Alloys Compd. 2017, 721, 149–156. [Google Scholar] [CrossRef]
- Abdellatif, M.; Louafi, Y.; Nunes, D.; Freire, T.; Fortunato, E.; Martins, R.; Kabouche, S.; Trari, M. Studies on photocatalytic degradation of Rhodamine B using the valentinite Sb2O3. React. Kinet. Mech. Catal. 2023, 136, 1643–1655. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Kumari, H.; Sonia Suman Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; Kumar, A. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water Air Soil Pollut. 2023, 234, 349. [Google Scholar] [CrossRef]
- Li, M.; Zhu, L.; Liu, X.; Yu, Y.; Zhang, H.; Yu, B.; Chen, B.H. Synthesis of Antimony Trioxide Crystals with Various Morphologies and Their UV-Vis-NIR Reflectance Performance. ChemistrySelect 2018, 3, 4310–4314. [Google Scholar] [CrossRef]
- Qi, W.; Guo, S.; Sun, H.; Liu, Q.; Hu, H.; Liu, P.; Zhang, M. Synthesis and characterization of Sb2O3 nanoparticles by liquid phase method under acidic conditions. J. Cryst. Growth 2022, 588, 126642. [Google Scholar] [CrossRef]
- Makhloufi, R.; Hachani, S.E.; Zekri, Z.; Tair, W. Solvothermal Synthesis of Antimony Trioxide Sb2O3 Used as a Photocatalyst for Crystal Violet Dye Degradation. Mosc. Univ. Chem. Bull. 2022, 77, 111–116. [Google Scholar] [CrossRef]
- Shan, C.W.; Hu, H.T.; Chen, Z.; Han, G.C.; Feng, X.Z.; Kraatz, H.B. Fabrication of block-shaped Sb2O3 and flower-shaped CoNPs nanocomposites for ultrasensitive antioxidant quercetin sensing and its electrooxidation mechanism. Microchem. J. 2024, 201, 110661. [Google Scholar] [CrossRef]
- Jabeen, S.; Siddiqui, V.U.; Bala, S.; Mishra, N.; Mishra, A.; Lawrence, R.; Bansal, P.; Khan, A.R.; Khan, T. Biogenic Synthesis of Copper Oxide Nanoparticles from Aloe vera: Antibacterial Activity, Molecular Docking, and Photocatalytic Dye Degradation. ACS Omega 2024, 9, 30190–30204. [Google Scholar] [CrossRef]
- Tan, Y.M.; Chen, X.H.; Zhu, Y.R.; Chen, L.J. Synthesis of spherical tremella-like Sb2O3 structures derived from the metal-organic framework and its lithium storage properties. J. Cent. South. Univ. 2019, 26, 1469–1480. [Google Scholar] [CrossRef]
- Bai, H.; Guo, H.; Wang, J.; Dong, Y.; Liu, B.; Guo, F.; Zheng, Y. Hydrogen gas sensor based on SnO2 nanospheres modified with Sb2O3 prepared by the one-step solvothermal route. Sens. Actuators B Chem. 2021, 331, 129441. [Google Scholar] [CrossRef]
- Ersundu, A.E.; Çelikbilek, M.; Baazouzi, M.; Soltani, M.T.; Troles, J.; Aydin, S. Characterization of new Sb2O3-based multicomponent heavy metal oxide glasses. J. Alloys Compd. 2014, 615, 712–718. [Google Scholar] [CrossRef]
- Ochirkhuyag, A.; Tóth, I.Y.; Kormányos, A.; Janáky, C.; Kónya, Z. Composition-Dependent Optical and Photoelectrochemical Behavior of Antimony Oxide Iodides. J. Electrochem. Soc. 2019, 166, H3202. [Google Scholar] [CrossRef]
- Divya, K.V.; Abraham, K.E. Ag nanoparticle decorated Sb2O3 thin film: Synthesis, characterizations and application. Nano Express 2020, 1, 020005. [Google Scholar] [CrossRef]
- Rosaline, D.R.; Suganthi, A.; Vinodhkumar, G.; Inbanathan, S.S.R.; Umar, A.; Ameen, S.; LuizFoletto, E. Enhanced sunlight-driven photocatalytic activity of SnO2- Sb2O3 composite towards emerging contaminant degradation in water. J. Alloys Compd. 2022, 897, 162935. [Google Scholar] [CrossRef]
- He, G.H.; Liang, C.J.; Ou, Y.D.; Liu, D.N.; Fang, Y.P.; Xu, Y.H. Preparation of novel Sb2O3/WO3 photocatalysts and their activities under visible light irradiation. Mater. Res. Bull. 2013, 48, 2244–2249. [Google Scholar] [CrossRef]
- Wang, Z.; Srivastava, V.; Iftekhar, S.; Ambat, I.; Sillanpää, M. Fabrication of Sb2O3/PbO photocatalyst for the UV/PMS-assisted degradation of carbamazepine from synthetic wastewater. Chem. Eng. J. 2018, 354, 663–671. [Google Scholar] [CrossRef]
- Jabeen, S.; Ganie, A.S.; Bala, S.; Khan, T. Photocatalytic Degradation of Malachite Green Dye via An Inner Transition Metal Oxide-Based Nanostructure Fabricated through a Hydrothermal Route. Mater. Proc. 2023, 14, 5. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Jabeen, S.; Siddiqui, V.U.; Sharma, S.; Rai, S.; Bansal, P.; Bala, S.; Raza, A.; Ahmad, M.I.; Khan, A.R.; Khan, T. A novel green synthesis of CuFe2O4 Nanoparticles from Cissus rotundifolia for photocatalytic and antimicrobial activity evaluation. J. Alloys Compd. 2024, 984, 174020. [Google Scholar] [CrossRef]
Material | 2θ Value | FWHM Value | Crystallite Size at Different θ Values (nm) | Average Crystallite Size of Sb2O3 NPs (nm) |
---|---|---|---|---|
Sb2O3 NPs | 19.29° | 0.43 | 20.91 | 20.89 nm |
28.36° | 0.41 | 20.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabeen, S.; Veg, E.; Bala, S.; Khan, T. Synthesis, Characterization, and Photocatalytic Activity of Sb2O3 Nanoparticles: A Step towards Environmental Sustainability. Eng. Proc. 2024, 67, 8. https://doi.org/10.3390/engproc2024067008
Jabeen S, Veg E, Bala S, Khan T. Synthesis, Characterization, and Photocatalytic Activity of Sb2O3 Nanoparticles: A Step towards Environmental Sustainability. Engineering Proceedings. 2024; 67(1):8. https://doi.org/10.3390/engproc2024067008
Chicago/Turabian StyleJabeen, Sabeeha, Ekhlakh Veg, Shashi Bala, and Tahmeena Khan. 2024. "Synthesis, Characterization, and Photocatalytic Activity of Sb2O3 Nanoparticles: A Step towards Environmental Sustainability" Engineering Proceedings 67, no. 1: 8. https://doi.org/10.3390/engproc2024067008
APA StyleJabeen, S., Veg, E., Bala, S., & Khan, T. (2024). Synthesis, Characterization, and Photocatalytic Activity of Sb2O3 Nanoparticles: A Step towards Environmental Sustainability. Engineering Proceedings, 67(1), 8. https://doi.org/10.3390/engproc2024067008