A Methodology for Forecasting Demands in a Water Distribution Network Based on the Classical and Neural Networks Approach †
Abstract
:1. Introduction
2. Methodology
2.1. Preprocessing
2.2. LSTM for Water Demand Forecasting
2.3. Hyperparameter Optimization and Model Enhancement
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghalehkhondabi, I.; Ardjmand, E.; Young, W.A.; Weckman, G.R. Water Demand Forecasting: Review of Soft Computing Methods. Environ. Monit. Assess. 2017, 189, 313. [Google Scholar] [CrossRef] [PubMed]
- Avni, N.; Fishbain, B.; Shamir, U. Water Consumption Patterns as a Basis for Water Demand Modeling. Water Resour. Res. 2015, 51, 8165–8181. [Google Scholar] [CrossRef]
- Xiao, Y.; Kong, W.; Liang, Z. Short-Term Demand Forecasting of Urban Online Car-Hailing Based on the K-Nearest Neighbor Model. Sensors 2022, 22, 9456. [Google Scholar] [CrossRef] [PubMed]
- Kühnert, C.; Gonuguntla, N.M.; Krieg, H.; Nowak, D.; Thomas, J.A. Application of LSTM Networks for Water Demand Prediction in Optimal Pump Control. Water 2021, 13, 644. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Liu, L.; Wen, Y. The Impact of Bayesian Optimization on Feature Selection. Sci. Rep. 2024, 14, 3948. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, C.; Salcedo, C.; Saldarriaga, J. Assessment of the Effects of COVID-19 Pandemic Stay-at-Home Measures on Potable Water Consumption Patterns, Location, and Financial Impacts for Water Utilities in Colombian Cities. Water 2022, 14, 3004. [Google Scholar] [CrossRef]
DMA | A | B | C | D | E | F | G | H | I | J |
---|---|---|---|---|---|---|---|---|---|---|
R2 (—) | 0.78 | 0.74 | 0.82 | 0.83 | 0.92 | 0.60 | 0.87 | 0.92 | 0.66 | 0.81 |
MAPE (%) | 12.26 | 4.34 | 10.73 | 6.93 | 3.54 | 8.03 | 5.67 | 10.91 | 5.64 | 6.27 |
RMSE (—) | 0.92 | 0.51 | 0.39 | 2.75 | 4.24 | 1.31 | 1.92 | 3.50 | 1.73 | 1.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coy, Y.; González, L.; Basto, L.; Rodríguez, V.; Gómez, S.; Perafán, J.; Cardona, S.; Tabares, A.; Saldarriaga, J. A Methodology for Forecasting Demands in a Water Distribution Network Based on the Classical and Neural Networks Approach. Eng. Proc. 2024, 69, 29. https://doi.org/10.3390/engproc2024069029
Coy Y, González L, Basto L, Rodríguez V, Gómez S, Perafán J, Cardona S, Tabares A, Saldarriaga J. A Methodology for Forecasting Demands in a Water Distribution Network Based on the Classical and Neural Networks Approach. Engineering Proceedings. 2024; 69(1):29. https://doi.org/10.3390/engproc2024069029
Chicago/Turabian StyleCoy, Yesid, Laura González, Laura Basto, Valeria Rodríguez, Santiago Gómez, Juan Perafán, Simón Cardona, Alejandra Tabares, and Juan Saldarriaga. 2024. "A Methodology for Forecasting Demands in a Water Distribution Network Based on the Classical and Neural Networks Approach" Engineering Proceedings 69, no. 1: 29. https://doi.org/10.3390/engproc2024069029
APA StyleCoy, Y., González, L., Basto, L., Rodríguez, V., Gómez, S., Perafán, J., Cardona, S., Tabares, A., & Saldarriaga, J. (2024). A Methodology for Forecasting Demands in a Water Distribution Network Based on the Classical and Neural Networks Approach. Engineering Proceedings, 69(1), 29. https://doi.org/10.3390/engproc2024069029