To Satisfy or Clarify: Enhancing User Information Satisfaction with AI-Powered ChatGPT †
Abstract
:1. Introduction
2. Theoretical Background
2.1. UIS
2.2. Theoretical Framework
3. Hypotheses
ChatGPT UIS Measures and Satisfaction
4. Methodology
4.1. Measures
4.2. Data Collection
4.3. Data Analysis
5. Results
5.1. CMV
5.2. Validity and Reliability
5.3. Hypothesis Testing
6. Discussion
7. Conclusions
Implication
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lund, B.D.; Wang, T.; Mannuru, N.R.; Nie, B.; Shimray, S.; Wang, Z. ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. J. Assoc. Inf. Sci. Technol. 2023, 74, 570–581. [Google Scholar] [CrossRef]
- Bringula, R. What do academics have to say about ChatGPT? A text mining analytics on the discussions regarding ChatGPT on research writing. AI Ethics 2023, 1–13. [Google Scholar] [CrossRef]
- Roose, K. Don’t Ban ChatGPT in Schools. Teach with It. 2023. Available online: https://www.nytimes.com/2023/01/12/technology/chatgpt-schools-teachers.html (accessed on 13 February 2024).
- Foroughi, B.; Senali, M.G.; Iranmanesh, M.; Khanfar, A.; Ghobakhloo, M.; Annamalai, N.; Naghmeh-Abbaspour, B. Determinants of intention to use ChatGPT for educational purposes: Findings from PLS-SEM and fsQCA. Int. J. Hum. Comput. Int. 2023, 1–20. [Google Scholar] [CrossRef]
- Rivas, P.; Zhao, L. Marketing with chatgpt: Navigating the ethical terrain of gpt-based chatbot technology. AI 2023, 4, 375–384. [Google Scholar] [CrossRef]
- Bin-Nashwan, S.A.; Sadallah, M.; Bouteraa, M. Use of ChatGPT in academia: Academic integrity hangs in the balance. Technol. Soc. 2023, 75, 102370. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V.; Ahuja, M.; et al. “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J Inf. Manag. 2023, 71, 102642. [Google Scholar] [CrossRef]
- Baek, T.H.; Kim, M. Is ChatGPT scary good? How user motivations affect creepiness and trust in generative artificial intelligence. Telemat. Inform. 2023, 83, 102030. [Google Scholar] [CrossRef]
- Kocoń, J.; Cichecki, I.; Kaszyca, O.; Kochanek, M.; Szydło, D.; Baran, J.; Bielaniewicz, J.; Gruza, M.; Janz, A.; Kanclerz, K.; et al. ChatGPT: Jack of all trades, master of none. Inf. Fusion. 2023, 99, 101861. [Google Scholar] [CrossRef]
- Ives, B.; Olson, M.H.; Baroudi, J.J. The measurement of user information satisfaction. Commun. ACM 1983, 26, 785–793. [Google Scholar] [CrossRef]
- Laumer, S.; Maier, C.; Weitzel, T. Information quality, user satisfaction, and the manifestation of workarounds: A qualitative and quantitative study of enterprise content management system users. Eur. J. Inf. Syst. 2017, 26, 333–360. [Google Scholar] [CrossRef]
- Bai, B.; Law, R.; Wen, I. The impact of website quality on customer satisfaction and purchase intentions: Evidence from Chinese online visitors. Int. J. Hosp. Manag. 2008, 27, 391–402. [Google Scholar] [CrossRef]
- Iivari, J.; Ervasti, I. User information satisfaction: IS implementability and effectiveness. J. Inf. Manag. 1994, 27, 205–220. [Google Scholar] [CrossRef]
- Ang, J.; Soh, P.H. User information satisfaction, job satisfaction and computer background: An exploratory study. J. Inf. Manag. 1997, 32, 255–266. [Google Scholar] [CrossRef]
- Galletta, D.F.; Lederer, A.L. Some cautions on the measurement of user information satisfaction. Decis. Sci. 1989, 20, 419–443. [Google Scholar] [CrossRef]
- Gupta, S.; Motlagh, M.; Rhyner, J. The digitalization sustainability matrix: A participatory research tool for investigating digitainability. Sustainability 2020, 12, 9283. [Google Scholar] [CrossRef]
- Reinecke, K.; Bernstein, A. Knowing what a user likes: A design science approach to interfaces that automatically adapt to culture. MIS Q. 2013, 37, 427–453. [Google Scholar] [CrossRef]
- Chen, Y.; Zahedi, F.M.; Abbasi, A.; Dobolyi, D. Trust calibration of automated security IT artifacts: A multi-domain study of phishing-website detection tools. Inf. Manag. 2021, 58, 103394. [Google Scholar] [CrossRef]
- Petter, S.; Fruhling, A. Evaluating the success of an emergency response medical information systemInt. J. Med. Inform. 2011, 80, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Zo, H.; Ciganek, A.P.; Lim, G.G. Examining success factors in the adoption of digital object identifier systems. Electron. Commer. Res. Appl. 2011, 10, 626–636. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Baumgartner, H.; Weijters, B.; Pieters, R. The biasing effect of common method variance: Some clarifications. J. Acad. Mark. Sci. 2021, 49, 221–235. [Google Scholar] [CrossRef]
- Hair, J.; Hollingsworth, C.L.; Randolph, A.B.; Chong, A.Y.L. An updated and expanded assessment of PLS-SEM in information systems research. Ind. Manag. Data Syst. 2017, 117, 442–458. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Falk, R.F.; Miller, N.B. A Primer for Soft Modeling; The University of Akron Press: Akron, OH, USA, 1992. [Google Scholar]
Constructs | OL | CA | CR | VIF | AVE |
---|---|---|---|---|---|
Accuracy | 0.736–0.858 | 0.713 | 0.724 | 1.288–1.597 | 0.636 |
Completeness | 0.735–0.964 | 0.790 | 0.936 | 1.385–1.385 | 0.734 |
Convenience | 0.820–0.841 | 0.771 | 0.781 | 1.444–1.770 | 0.684 |
Format | 0.870–0.871 | 0.781 | 0.681 | 1.314–1.363 | 0.758 |
Precision | 0.792–0.850 | 0.736 | 0.655 | 1.044–1.317 | 0.526 |
Reliability | 0.869–0.908 | 0.735 | 0.749 | 1.510–1.510 | 0.790 |
Satisfaction | 0.797–0.832 | 0.822 | 0.822 | 1.678–1.913 | 0.652 |
Timeliness | 0.860–0.889 | 0.709 | 0.699 | 1.392–1.392 | 0.765 |
Constructs | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
ACC (1) | 0.798 | 0.352 | 0.876 | 0.808 | 0.873 | 0.776 | 0.718 | 0.858 |
CMP (2) | 0.251 | 0.857 | 0.277 | 0.449 | 0.655 | 0.374 | 0.176 | 0.282 |
CVC (3) | 0.652 | 0.210 | 0.827 | 0.714 | 0.644 | 0.623 | 0.683 | 0.788 |
FMT (4) | 0.564 | 0.299 | 0.521 | 0.871 | 0.875 | 0.598 | 0.784 | 0.691 |
PRR (5) | 0.685 | 0.315 | 0.664 | 0.525 | 0.725 | 0.858 | 0.827 | 0.895 |
RLB (6) | 0.557 | 0.284 | 0.476 | 0.423 | 0.558 | 0.889 | 0.537 | 0.249 |
STS (7) | 0.551 | 0.146 | 0.555 | 0.586 | 0.586 | 0.420 | 0.808 | 0.682 |
TML (8) | 0.601 | 0.215 | 0.584 | 0.475 | 0.577 | 0.661 | 0.517 | 0.875 |
Items/Contructs | ACC | CMP | CVC | FMT | PRR | RLB | STS | TML |
---|---|---|---|---|---|---|---|---|
ACR.1 | 0.795 | 0.253 | 0.519 | 0.468 | 0.511 | 0.499 | 0.427 | 0.514 |
ACR.2 | 0.858 | 0.179 | 0.523 | 0.482 | 0.559 | 0.411 | 0.488 | 0.479 |
ACR.3 | 0.736 | 0.171 | 0.524 | 0.396 | 0.574 | 0.431 | 0.400 | 0.450 |
CMP.1 | 0.239 | 0.964 | 0.207 | 0.268 | 0.313 | 0.288 | 0.159 | 0.224 |
CMP.2 | 0.191 | 0.735 | 0.141 | 0.270 | 0.210 | 0.171 | 0.063 | 0.114 |
CNV.1 | 0.496 | 0.201 | 0.820 | 0.407 | 0.480 | 0.351 | 0.364 | 0.412 |
CNV.2 | 0.533 | 0.173 | 0.841 | 0.421 | 0.600 | 0.419 | 0.488 | 0.480 |
CNV.3 | 0.578 | 0.154 | 0.820 | 0.458 | 0.551 | 0.402 | 0.500 | 0.537 |
FMR.1 | 0.489 | 0.307 | 0.421 | 0.870 | 0.419 | 0.371 | 0.510 | 0.387 |
FMR.2 | 0.492 | 0.213 | 0.485 | 0.871 | 0.494 | 0.365 | 0.511 | 0.440 |
PRC.1 | 0.576 | 0.203 | 0.568 | 0.418 | 0.850 | 0.457 | 0.515 | 0.486 |
PRC.2 | 0.577 | 0.203 | 0.569 | 0.439 | 0.838 | 0.480 | 0.491 | 0.503 |
PRC.3 | 0.277 | 0.473 | 0.218 | 0.285 | 0.792 | 0.235 | 0.182 | 0.191 |
RLB.1 | 0.498 | 0.287 | 0.398 | 0.371 | 0.445 | 0.869 | 0.340 | 0.557 |
RLB.2 | 0.494 | 0.224 | 0.446 | 0.381 | 0.540 | 0.908 | 0.402 | 0.615 |
STS.1 | 0.438 | 0.093 | 0.441 | 0.489 | 0.456 | 0.295 | 0.798 | 0.364 |
STS.2 | 0.444 | 0.082 | 0.481 | 0.445 | 0.489 | 0.354 | 0.832 | 0.444 |
STS.3 | 0.459 | 0.151 | 0.421 | 0.493 | 0.446 | 0.361 | 0.797 | 0.410 |
STS.4 | 0.439 | 0.147 | 0.448 | 0.467 | 0.500 | 0.345 | 0.802 | 0.450 |
TML.1 | 0.525 | 0.202 | 0.523 | 0.413 | 0.502 | 0.591 | 0.427 | 0.860 |
TML.2 | 0.528 | 0.176 | 0.499 | 0.418 | 0.509 | 0.568 | 0.475 | 0.889 |
Hypothesis | β | T | Bootstrapping CI 97.5% | Decision | |
---|---|---|---|---|---|
Lower | Upper | ||||
CMP → STS | 0.096 ** | 2.863 | 0.168 | 0.040 | Accept |
AC → STS | 0.070 | 1.247 | 0.037 | 0.182 | Reject |
PRC → STS | 0.245 *** | 3.681 | 0.117 | 0.378 | Accept |
RLB → STS | 0.016 | 0.400 | 0.118 | 0.086 | Reject |
TML → STS | 0.138 ** | 2.396 | 0.025 | 0.249 | Accept |
CVN → STS | 0.126 ** | 2.192 | 0.014 | 0.239 | Accept |
FMT → STS | 0.323 *** | 5.115 | 0.202 | 0.444 | Accept |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.J.; Silalahi, A.D.K.; Shih, I.-T.; Phuong, D.T.T.; Eunike, I.J.; Jargalsaikhan, S. To Satisfy or Clarify: Enhancing User Information Satisfaction with AI-Powered ChatGPT. Eng. Proc. 2024, 74, 3. https://doi.org/10.3390/engproc2024074003
Fu CJ, Silalahi ADK, Shih I-T, Phuong DTT, Eunike IJ, Jargalsaikhan S. To Satisfy or Clarify: Enhancing User Information Satisfaction with AI-Powered ChatGPT. Engineering Proceedings. 2024; 74(1):3. https://doi.org/10.3390/engproc2024074003
Chicago/Turabian StyleFu, Chung Jen, Andri Dayarana K. Silalahi, I-Tung Shih, Do Thi Thanh Phuong, Ixora Javanisa Eunike, and Shinetseteg Jargalsaikhan. 2024. "To Satisfy or Clarify: Enhancing User Information Satisfaction with AI-Powered ChatGPT" Engineering Proceedings 74, no. 1: 3. https://doi.org/10.3390/engproc2024074003
APA StyleFu, C. J., Silalahi, A. D. K., Shih, I.-T., Phuong, D. T. T., Eunike, I. J., & Jargalsaikhan, S. (2024). To Satisfy or Clarify: Enhancing User Information Satisfaction with AI-Powered ChatGPT. Engineering Proceedings, 74(1), 3. https://doi.org/10.3390/engproc2024074003