Evaluation of Fabrication Process for Molybdenum Disulfide Quantum Dots in Organic Solvents Using Ultrasonic and Thermal Exfoliation †
Abstract
:1. Introduction
2. Material and Method
2.1. Synthesis Method
2.2. Optical Characterization
2.3. Ex-Vitro Photothermal Effect
2.4. In-Vitro Biocompatibility
3. Result
3.1. Yield of Synthesis
3.2. Characterization
3.2.1. Particle Size and Morphology
3.2.2. UV-Visible Spectrum
3.2.3. Optical Absorbance
3.2.4. Photoluminescence
3.3. Photothermal Effect
3.4. Biocompatibility Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, P.C.H.; Outteridge, T.; Kloska, K.; McMahon, S.; Epshteyn, Y.; Roger, F.S.; Burkin, A.R.; Dorfler, R.R.; Laferty, J.M.; Leichtfried, G.; et al. Molybdenum and Molybdenum Compounds. Ullmann’s Encycl. Ind. Chem. 2020, 1–63. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.Y.; Cheng, Y.S.; Wang, D.M.; Li, M.L.; Lu, W.S.; Xu, X.Y.; Zhou, X.H.; Wei, X.W. Nitrogen-Doped MoS2 QDs: Facile Synthesis and Application for the Assay of Hematin in Human Blood. Mater. Sci. Eng. C 2020, 112, 110898. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Z.; Hu, Y.; Xiang, Y.; Zhang, L.; Wang, Y.; Wang, G.C.; Shi, J. Flexo-Photovoltaic Effect in MoS2. Nat Nanotechnol 2021, 16, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, J. MoS2 QDs: Synthesis, Properties and Biological Applications. Mater. Sci. Eng. C 2020, 109, 110511. [Google Scholar] [CrossRef]
- Chen, X.; Park, Y.J.; Kang, M.; Kang, S.K.; Koo, J.; Shinde, S.M.; Shin, J.; Jeon, S.; Park, G.; Yan, Y.; et al. CVD-Grown Monolayer MoS2 in Bioabsorbable Electronics and Biosensors. Nat. Commun. 2018, 9, 1690. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Quan, X. Two-Dimensional MoS2: A Promising Building Block for Biosensors. Biosens. Bioelectron. 2017, 89, 56–71. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.; Zhang, S.; Yang, Y.; Chen, X.; Zhang, M. Fluorescent Carbon Nanoparticles for the Fluorescent Detection of Metal Ions. Biosens. Bioelectron. 2015, 63, 61–71. [Google Scholar] [CrossRef]
- Museux, N.; Perez, L.; Autrique, L.; Agay, D. Skin Burns after Laser Exposure: Histological Analysis and Predictive Simulation. Burns 2012, 38, 658–667. [Google Scholar] [CrossRef]
- Svobodova, B.; Kloudova, A.; Ruzicka, J.; Kajtmanova, L.; Navratil, L.; Sedlacek, R.; Suchy, T.; Jhanwar-Uniyal, M.; Jendelova, P.; Machova Urdzikova, L. The Effect of 808 nm and 905 nm Wavelength Light on Recovery after Spinal Cord Injury. Sci. Rep. 2019, 9, 7660. [Google Scholar] [CrossRef]
- Huang, H.; Liu, N.; Wang, X.; Zhong, M.; Huang, X. Application of Hydrothermal and Solvothermal Method in Synthesis of MoS2. Mater. Plast. 2022, 59, 26–35. [Google Scholar] [CrossRef]
- Li, Z.; Fan, R.; Hu, Z.; Li, W.; Zhou, H.; Kang, S.; Zhang, Y.; Zhang, H.; Wang, G. Ethanol introduced synthesis of ultrastable 1T-MoS2 for removal of Cr (VI). J. Hazard. Mater. 2020, 394, 122525. [Google Scholar] [CrossRef]
- Chikan, V.; Kelley, D.F. Size-Dependent Spectroscopy of MoS2 Nanoclusters. J. Phys. Chem. B 2002, 106, 3794–3804. [Google Scholar] [CrossRef]
- Kira, M.; Jahnke, F.; Koch, S.W. Quantum Theory of Secondary Emission in Optically Excited Semiconductor Quantum Wells. Phys. Rev. Lett. 1999, 82, 3544–3547. [Google Scholar] [CrossRef]
- Hari Krishna, P.; Ramrakhiani, M. Nano Particle Size Effect on Photo-Luminescence. Int. J. Nanotechnol. Appl. 2010, 4, 13–19. [Google Scholar] [CrossRef]
- Cao, H.; Wang, H.; Huang, Y.; Sun, Y.; Shi, S.; Tang, M. Quantification of Gold(III) in Solution and with a Test Stripe via the Quenching of the Fluorescence of Molybdenum Disulfide QDs. Microchim. Acta 2017, 184, 91–100. [Google Scholar] [CrossRef]
- Ryou, J.; Kim, Y.S.; Kc, S.; Cho, K. Monolayer MoS2 Bandgap Modulation by Dielectric Environments and Tunable Bandgap Transistors. Sci. Rep. 2016, 6, 29184. [Google Scholar] [CrossRef]
- Kobayashi, K.; Yamauchi, J. Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Phys. Rev. B 1995, 51, 17085–17095. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.S.; Han, S.W.; Hong, S.C.; Kim, I.G.; Lee, J.D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305. [Google Scholar] [CrossRef]
- Cheiwchanchamnangij, T.; Lambrecht, W.R.L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302. [Google Scholar] [CrossRef]
- Qiu, D.Y.; da Jornada, F.H.; Louie, S.G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 2013, 111, 216805. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Suo, Y.; Shi, H.; Liu, R.; Wu, F.; Wang, T.; Ma, L.; Liu, H.; Cheng, Z. Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. Nanomicro Lett. 2020, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zeng, W.; Zhang, C.; Meng, Z.; Wu, J.; Zhu, Q.; Wu, D.; Zhu, H. Broadband Absorption and Enhanced Photothermal Conversion Property of Octopod-like Ag@Ag2S Core@shell Structures with Gradually Varying Shell Thickness. Sci. Rep. 2017, 7, 17782. [Google Scholar] [CrossRef] [PubMed]
Synthesis | MoS2 Weight (mg) | Solvent (mL) | Product Weight (MoS2 QDs, mg) | Yield Ratio |
---|---|---|---|---|
Sonication Method (US) | 200 mg | EtOH, 20 mL | 14 mg | 7.0% |
DIW, 20 mL | 9 mg | 4.5% | ||
NMP, 20 mL | 6 mg | 3.0% | ||
Solvent-Thermal Method (ST) | EtOH, 20 mL | 30 mg | 15.0% | |
DIW, 20 mL | 4 mg | 2.0% | ||
NMP, 20 mL | 3 mg | 1.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yiu, H.-P.; Wu, C.-J.; Li, C.; Lee, C.-Y. Evaluation of Fabrication Process for Molybdenum Disulfide Quantum Dots in Organic Solvents Using Ultrasonic and Thermal Exfoliation. Eng. Proc. 2024, 74, 69. https://doi.org/10.3390/engproc2024074069
Yiu H-P, Wu C-J, Li C, Lee C-Y. Evaluation of Fabrication Process for Molybdenum Disulfide Quantum Dots in Organic Solvents Using Ultrasonic and Thermal Exfoliation. Engineering Proceedings. 2024; 74(1):69. https://doi.org/10.3390/engproc2024074069
Chicago/Turabian StyleYiu, Hon-Pan, Cheng-Jun Wu, Chuan Li, and Cho-Yin Lee. 2024. "Evaluation of Fabrication Process for Molybdenum Disulfide Quantum Dots in Organic Solvents Using Ultrasonic and Thermal Exfoliation" Engineering Proceedings 74, no. 1: 69. https://doi.org/10.3390/engproc2024074069
APA StyleYiu, H. -P., Wu, C. -J., Li, C., & Lee, C. -Y. (2024). Evaluation of Fabrication Process for Molybdenum Disulfide Quantum Dots in Organic Solvents Using Ultrasonic and Thermal Exfoliation. Engineering Proceedings, 74(1), 69. https://doi.org/10.3390/engproc2024074069