Sustainable Bicycle Crank Arm Selection Using Life Cycle Analysis Under Typical Cycling Pedal Forces †
Abstract
:1. Introduction
2. Design Analysis and Material Selection
2.1. CAD Model
2.2. Material Properties
3. Static Structural Analysis
4. Results
4.1. Fatigue Failure Analysis at Speeding Scheme (310 N)
4.2. Fatigue Failure Analysis at Speeding Scheme (750 N)
4.3. Fatigue Failure Analysis at Speeding Scheme (1815 N)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Govorushko, S. Environmental problems of extraction, transportation, and use of fossil fuels. In Fossil Fuels: Sources, Environmental Concerns and Waste Management Practices; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 1–84. [Google Scholar]
- Mbuyisa, M. The Role of the Bicycle in the Integration and Settlement of Refugees in the Netherlands. Bachelor’s Thesis, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands, August 2017. [Google Scholar]
- Casas, O.V.; Dalazen, R.; Balbinot, A. 3D load cell for measure force in a bicycle crank. Measurement 2016, 93, 189–201. [Google Scholar] [CrossRef]
- O’Kane, J.F.; Spenceley, J.R.; Taylor, R. Simulation as an essential tool for advanced manufacturing technology problems. J. Mater. Process. Technol. 2000, 107, 412–424. [Google Scholar] [CrossRef]
- Gross, V.J.; Bennett, C.A. Bicycle crank length. Proc. Hum. Factors Soc. Annu. Meet. 1976, 20, 415–421. [Google Scholar] [CrossRef]
- Zamparo, P.; Minetti, A.E.; di Prampero, P.E. Mechanical efficiency of cycling with a new developed pedal–crank. J. Biomech. 2002, 35, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Hull, M.L.; Gonzalez, H. Bivariate optimization of pedalling rate and crank arm length in cycling. J. Biomech. 1988, 21, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Madivalar, C.N.; Shay, T. Fatigue Failure Analysis Of Bike Crank Arm Usi ng Solidworks Simulation. J. Mech. Eng. Res. Dev. (JMERD) 2018, 41, 9–13. [Google Scholar] [CrossRef]
- Hoff, C.J.; Dippery, R.E.; Knapp, J. Stress evaluation of a bicycle crank arm connection using BEM. WIT Trans. Model. Simul. 2003, 34, 10. [Google Scholar] [CrossRef]
- Kim, H.; Yum, J.; Hur, B.; Cheung, G.S. Cyclic fatigue and fracture characteristics of ground and twisted nickel-titanium rotary files. J. Endod. 2010, 36, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Xiao-yan, T.; De-jun, W.; Hao, X. Investigation of cyclic hysteresis energy in fatigue failure process. Int. J. Fatigue 1989, 11, 353–359. [Google Scholar] [CrossRef]
- Amritpal Kaur Sandhu-Longoria Shimano Recalls Bicycle Cranksets in U.S. and Canada After More Than 4,500 Reports. USA TODAY. 2023. Available online: https://www.usatoday.com/story/money/2023/09/25/shimano-crankset-recall-bicycle/70964302007/ (accessed on 26 September 2023).
- Pawar, R.J.; Kolhe, K.P. Vibrational Analysis of Bicycle Chassis. Int. J. Innov. Res. Sci. Technol. 2016, 3, 139–140. [Google Scholar]
- Choo, W.O.; Nor, M.I.; Wong, W.; Xian, Z.; Lim, K.H.; Girma, T.C. A Study on Multiple Load Conditions Analysis for a Bicycle Chassis. J. Innov. Technol. 2022, 2022, 1–6. [Google Scholar]
- Pazare, M.V.; Khamankar, S.D. Stress analysis of bicycle frame. Int. J. Eng. Sci. Technol. 2014, 6, 287. [Google Scholar]
- Varda, K.; Bešlagić, E.; Kačmarčik, J.; Zaimović-Uzunović, N. Fatigue numerical analysis comparison on bicycle pedal example using different software. In Proceedings of the 10th International Conference Mechanical Technologies and Structural Materials (MTSM 2021), Split, Croatia, 24 September 2021; pp. 153–158, ISSN 1847-7917. [Google Scholar]
- Tiku, S.; Bhat, S.; Tripathi, D.K.; Bharath, M.N. Design optimization of Bicycle Crank using Finite Element Analysis. Int. J. Res. Eng. Sci. Manag. 2019, 2, 358–363. [Google Scholar]
- McEwen, I.; Cooper, D.E.; Warnett, J.; Kourra, N.; Williams, M.A.; Gibbons, G.J. Design & manufacture of a high-performance bicycle crank by additive manufacturing. Appl. Sci. 2018, 8, 1360. [Google Scholar] [CrossRef]
- Gutiérrez-Moizant, R.; Ramírez-Berasategui, M.; Calvo, J.A.; Alvarez-Caldas, C. Validation and improvement of a bicycle crank arm based in numerical simulation and uncertainty quantification. Sensors 2020, 20, 1814. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Bicycle Crank Arm with Strain Gauge. U.S. Patent 10,286,978, 18 April 2018. [Google Scholar]
- Soden, P.D.; Adeyefa, B.A. Forces applied to a bicycle during normal cycling. J. Biomech. 1979, 12, 527–541. [Google Scholar] [CrossRef] [PubMed]
- City and Trekking Bicycles—Safety Requirements and Test Methods; German Version EN 14764:2005. Available online: https://www.document-center.com/standards/show/DIN-EN-14764 (accessed on 1 February 2024).
- Oxman, N.; Jesse, L.R. Material-based Design Computation An Inquiry into Digital Simulation of Physical Material Properties as Design Generators. Int. J. Archit. Comput. 2007, 5, 25–44. [Google Scholar] [CrossRef]
- Boiler, A. ASME Boiler and Pressure Vessel Code: An International Code; American Society of Mechanical Engineers: New York, NY, USA, 1998. [Google Scholar]
- Handbook, M. MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures; US Department of Defense: Washington, DC, USA, 1998.
- Ansys, R. ANSYS Mechanical APDL, Product Release 13.0; Ansys Inc.: Canonsburg, PA, USA, 2012. [Google Scholar]
- Do, M.; Nguyen, V.; Omnes, P. Analysis of dissipation operators that damp spurious modes while maintaining discrete approximate geostrophic equilibriums for the B-grid staggered scheme on triangular meshes. J. Comput. Phys. 2023, 489, 112261. [Google Scholar] [CrossRef]
- Ismail, A.Y.; Na, G.; Koo, B. Topology and response surface optimization of a bicycle crank arm with multiple load cases. Applied Sciences 2020, 10, 2201. [Google Scholar] [CrossRef]
- Gopinath, D.; Sushma, C.V. Design and optimization of four-wheeler connecting rod using finite element analysis. Mater. Today Proc. 2015, 2, 2291–2299. [Google Scholar] [CrossRef]
Type | Structural Steel | Aluminum Alloy |
---|---|---|
Density | 7.85 × 10−6 kg/mm3 | 2.77 × 10−6 kg/mm3 |
Young’s Modulus | 2 × 105 MPa | 71,000 MPa |
Poisson’s Ratio | 0.3 | 0.33 |
Bulk Modulus | 1.6667 × 105 MPa | 69,608 MPa |
Shear Modulus | 76,923 MPa | 26,692 MPa |
Compressive Ultimate Strength | - | 280 MPa |
Compressive Yield Strength | 250 MPa | - |
Tensile Ultimate Strength | 460 MPa | 310 MPa |
Tensile Yield Strength | 250 MPa | 280 MPa |
Isotropic Thermal Conductivity | 0.0605 W/mm°C | 0.018 W/mm°C |
Structural Steel | ||||||
---|---|---|---|---|---|---|
Load (N) | Stress (MPa) | Life (Cycle) | SF | |||
Without Fillet | With Fillet | Without Fillet | With Fillet | Without Fillet | With Fillet | |
310 | 100.87 | 86.678 | 4.05 × 105 | 9.69 × 105 | 1.3681 | 1.5921 |
750 | 244.04 | 209.71 | 12,753 | 21,544 | 0.56547 | 0.65807 |
1815 | 590.59 | 507.49 | 935.77 | 1388.1 | 0.23367 | 0.27193 |
Aluminum Alloy | ||||||
Load (N) | Stress (MPa) | Life (Cycle) | SF | |||
Without Fillet | With Fillet | Without Fillet | With Fillet | Without Fillet | With Fillet | |
310 | 100.46 | 86.617 | 1.61 × 107 | 7.14 × 107 | 1.7976 | 2.0848 |
750 | 243.04 | 209.56 | 4734.7 | 29,170 | 0.74299 | 0.86171 |
1815 | 588.17 | 507.13 | 0 | 0 | 0.30702 | 0.35608 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, A.; Wadud, M.A.; Hasib, M.A.; Islam, M.A. Sustainable Bicycle Crank Arm Selection Using Life Cycle Analysis Under Typical Cycling Pedal Forces. Eng. Proc. 2024, 76, 43. https://doi.org/10.3390/engproc2024076043
Rahman A, Wadud MA, Hasib MA, Islam MA. Sustainable Bicycle Crank Arm Selection Using Life Cycle Analysis Under Typical Cycling Pedal Forces. Engineering Proceedings. 2024; 76(1):43. https://doi.org/10.3390/engproc2024076043
Chicago/Turabian StyleRahman, Arafater, Mohammad Abdul Wadud, Mohammad Abdul Hasib, and Mohammad Ashraful Islam. 2024. "Sustainable Bicycle Crank Arm Selection Using Life Cycle Analysis Under Typical Cycling Pedal Forces" Engineering Proceedings 76, no. 1: 43. https://doi.org/10.3390/engproc2024076043
APA StyleRahman, A., Wadud, M. A., Hasib, M. A., & Islam, M. A. (2024). Sustainable Bicycle Crank Arm Selection Using Life Cycle Analysis Under Typical Cycling Pedal Forces. Engineering Proceedings, 76(1), 43. https://doi.org/10.3390/engproc2024076043