Evaluating 3D Printing Parameters of an Elastomeric Resin for Higher Stretchability and Strength Using the Analytic Hierarchy Process and Technique for Order of Preference by Similarity to Ideal Solution †
Abstract
:1. Introduction
2. Experimental Setup
2.1. Materials
2.2. Methods
3. Analytic Hierarchy Process (AHP)
4. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duty, C.; Ajinjeru, C.; Kishore, V.; Compton, B.; Hmeidat, N.; Chen, X.; Liu, P.; Hassen, A.A.; Lindahl, J.; Kunc, V. What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers. J. Manuf. Process 2018, 35, 526–537. [Google Scholar] [CrossRef]
- Yap, Y.L.; Sing, S.L.; Yeong, W.Y. A review of 3D printing processes and materials for soft robotics. Rapid Prototyp. J. 2020, 26, 1345–1361. [Google Scholar] [CrossRef]
- Khondoker, M.A.H.; Sameoto, D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater. Struct. 2016, 25, 093001. [Google Scholar] [CrossRef]
- Xu, C.; Dai, G.; Hong, Y. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta Biomater. 2019, 95, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Khondoker, M.A.H.; Asad, A.; Sameoto, D. Printing with mechanically interlocked extrudates using a custom bi-extruder for fused deposition modelling. Rapid Prototyp. J. 2018, 24, 921–934. [Google Scholar] [CrossRef]
- Gul, J.Z.; Sajid, M.; Rehman, M.M.; Siddiqui, G.U.; Shah, I.; Kim, K.H.; Lee, J.W.; Choi, K.H. 3D printing for soft robotics—A review. Sci. Technol. Adv. Mater. 2018, 19, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, C.; Bickel, B.; Rys, J.; Marschner, S.; Daraio, C.; Gross, M. Microstructures to control elasticity in 3D printing. ACM Trans. Graph. 2015, 34, 1–13. [Google Scholar] [CrossRef]
- Sakib-Uz-Zaman, C.; Khondoker, M.A.H. A Review on Extrusion Additive Manufacturing of Pure Copper. Metals 2023, 13, 859. [Google Scholar] [CrossRef]
- Irmscher, C.; Woschke, E.; May, E.; Daniel, C. Design, optimisation and testing of a compact, inexpensive elastic element for series elastic actuators. Med. Eng. Phys. 2018, 52, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Dodson Coulter, E.; Coakley, J.; Sessions, J. The Analytic Hierarchy Process: A Tutorial for Use in Prioritizing Forest Road Investments to Minimize Environmental Effects. Int. J. For. Eng. 2006, 17, 51–69. [Google Scholar]
- F80 Elastic 3D Printer Resin Black/Gingival-Like. RESIONE. Available online: https://www.resione.com/collections/best-selling-products/products/f80-dental-gum-color-elastic-resin-3d-printer-resin (accessed on 20 February 2024).
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022. Available online: https://doi.org/10.1520/D0638-14 (accessed on 20 February 2024).
- Tyagi, M.; Kumar, P.; Kumar, D. A hybrid approach using AHP-TOPSIS for analyzing e-SCM performance. Procedia Eng. 2014, 97, 2195–2203. [Google Scholar] [CrossRef]
- Kabir, G.; Ahsan Akhtar Hasin, M. Comparative analysis of ahp and fuzzy ahp models for multicriteria inventory classification. Int. J. Fuzzy Log. Syst. 2011, 1, 1–16. [Google Scholar]
- Moktadir, A.; Rahman, T.; Jabbour, C.J.C.; Mithun Ali, S.; Kabir, G. Prioritization of drivers of corporate social responsibility in the footwear industry in an emerging economy: A fuzzy AHP approach. J. Clean. Prod. 2018, 201, 369–381. [Google Scholar] [CrossRef]
- Zhongyou, X. Study on the Application of TOPSIS Method to the Introduction of Foreign Players in CBA Games. Phys. Procedia 2012, 33, 2034–2039. [Google Scholar] [CrossRef]
- Issa, U.; Saeed, F.; Miky, Y.; Alqurashi, M.; Osman, E. Hybrid AHP-Fuzzy TOPSIS Approach for Selecting Deep Excavation Support System. Buildings 2022, 12, 295. [Google Scholar] [CrossRef]
- Veisi, H.; Deihimfard, R.; Shahmohammadi, A.; Hydarzadeh, Y. Application of the analytic hierarchy process (AHP) in a multi-criteria selection of agricultural irrigation systems. Agric. Water Manag. 2022, 267, 107619. [Google Scholar] [CrossRef]
Mechanical Property | Acrylated Aliphatic Urethane-Based Resin Data |
---|---|
Shore Hardness | 50~60 A |
Tear Strength | 9.75 KN/m |
Tensile Strength | 3.8 MPa |
Elongation at Break | 159% |
Viscosity (25 °C) | 2300 Mpa·S |
Goal | Selecting the Optimized 3D Printing Parameters for Higher Stretchability and Strength | |
---|---|---|
Criteria | Upper Limit | Lower Limit |
PCT | 20 min | 10 min |
ET | 7.5 s | 3 s |
AC | Under UV protection [UUVP] | In room condition [IRC] |
RD | 3 axis | 1 axis |
RT | 2 s | 1 s |
TPO% | 3% | 0% |
AT | 3 weeks | 1 week |
Samples | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
E [MPa] | 4.25 | 4.05 | 4.56 | 3.95 | 4.81 | 4.49 | 4.59 | 3.94 | 4.84 | 4.08 | 4.07 | 4.30 |
ε [%] | 104.29 | 91.96 | 65.28 | 93.24 | 62.89 | 60.06 | 71.70 | 77.09 | 70.06 | 103.10 | 108.52 | 78.00 |
Samples | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | ||
E [MPa] | 4.72 | 4.20 | 4.07 | 4.33 | 4.10 | 4.27 | 4.52 | 3.84 | 4.30 | 4.19 | ||
ε [%] | 57.21 | 91.45 | 108.59 | 73.06 | 99.75 | 72.02 | 64.78 | 61.00 | 114.06 | 60.56 |
N | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RI | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.51 |
Criteria | PCT | ET | AC | RD | RT | TPO% | AT |
---|---|---|---|---|---|---|---|
PCT | 1.00 | 1.00 | 2.00 | 0.33 | 2.00 | 3.00 | 3.00 |
ET | 1.00 | 1.00 | 2.00 | 2.00 | 3.00 | 3.00 | 3.00 |
AC | 0.50 | 0.50 | 1.00 | 0.50 | 2.00 | 0.50 | 2.00 |
RD | 2.00 | 0.50 | 2.00 | 1.00 | 2.00 | 2.00 | 1.00 |
RT | 0.50 | 0.33 | 0.50 | 0.50 | 1.00 | 2.00 | 0.50 |
TPO% | 0.33 | 0.33 | 2.00 | 0.50 | 0.50 | 1.00 | 3.00 |
AT | 0.33 | 0.33 | 0.50 | 1.00 | 2.00 | 0.33 | 1.00 |
Criteria | PCT | ET | AC | RD | RT | TPO% | AT |
---|---|---|---|---|---|---|---|
Weights | 0.19 | 0.26 | 0.11 | 0.18 | 0.08 | 0.10 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsersawy, R.; Kabir, G.; Khondoker, M.A.H. Evaluating 3D Printing Parameters of an Elastomeric Resin for Higher Stretchability and Strength Using the Analytic Hierarchy Process and Technique for Order of Preference by Similarity to Ideal Solution. Eng. Proc. 2024, 76, 45. https://doi.org/10.3390/engproc2024076045
Elsersawy R, Kabir G, Khondoker MAH. Evaluating 3D Printing Parameters of an Elastomeric Resin for Higher Stretchability and Strength Using the Analytic Hierarchy Process and Technique for Order of Preference by Similarity to Ideal Solution. Engineering Proceedings. 2024; 76(1):45. https://doi.org/10.3390/engproc2024076045
Chicago/Turabian StyleElsersawy, Rawan, Golam Kabir, and Mohammad Abu Hasan Khondoker. 2024. "Evaluating 3D Printing Parameters of an Elastomeric Resin for Higher Stretchability and Strength Using the Analytic Hierarchy Process and Technique for Order of Preference by Similarity to Ideal Solution" Engineering Proceedings 76, no. 1: 45. https://doi.org/10.3390/engproc2024076045
APA StyleElsersawy, R., Kabir, G., & Khondoker, M. A. H. (2024). Evaluating 3D Printing Parameters of an Elastomeric Resin for Higher Stretchability and Strength Using the Analytic Hierarchy Process and Technique for Order of Preference by Similarity to Ideal Solution. Engineering Proceedings, 76(1), 45. https://doi.org/10.3390/engproc2024076045