Direction-of-Arrival (DOA) Estimation Based on Real Field Measurements and Modified Linear Regression †
Abstract
:1. Introduction
2. Methodology
2.1. Algorithm for DoA Estimation
2.2. Data Collection Method
2.3. Infrastructure Characteristics (Antenna Orientations)
- Dist: is the distance of the variation in longitude or latitude.
- ΔLAT: latitude variation.
- ΔLON: longitude variation.
3. Results
3.1. DoA Estimation in Coverage Area 1
3.1.1. Analysis of Radiofrequency Parameters and DoA Ranges
3.1.2. Correlation Matrix
3.1.3. Model Summary Using DoA Ranges
3.2. DoA Estimation in Coverage Area 2
3.2.1. Analysis of Radiofrequency Parameters and DoA Ranges
3.2.2. Correlation Matrix
3.2.3. Model Summary Using DoA Ranges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, Y.; Wu, S.; Wu, M.; Yuan, N. Unsupervised learning strategy for direction-of-arrival estimation network. IEEE Signal Process. Lett. 2021, 28, 1450–1454. [Google Scholar] [CrossRef]
- Kase, Y.; Nishimura, T.; Ohgane, T.; Ogawa, Y.; Kitayama, D.; Kishiyama, Y. Performance Analysis of DOA Estimation of Two Targets Using Deep Learning. In Proceedings of the 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), Lisbon, Portugal, 24–27 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Llugsi, R.; El Yacoubi, S.; Fontaine, A.; Lupera, P. A novel approach for detecting error measurements in a network of automatic weather stations. Int. J. Parallel Emergent Distrib. Syst. 2022, 37, 425–442. [Google Scholar] [CrossRef]
- Llugsi, R.; Yacoubi, S.E.; Fontaine, A.; Lupera, P. A novel Encoder-Decoder structure for Time Series analysis based on Bayesian Uncertainty reduction. In Proceedings of the 2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Temuco, Chile, 2–4 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Llugsi, R.; Fontaine, A.; Lupera, P.; Yacoubi, S. Deep learning to implement a statistical weather forecast for the Andean city of Quito. In Proceedings of the IEEE ANDESCON 2020, Quito, Ecuador, 13–16 October 2020; pp. 1–6. [Google Scholar]
- Abbasi, M.; Yurduseven, O.; Akinsolu, M.; Fusco, V.; Liu, B.; Khalily, M.; Cotton, S.; Imran, M. Machine learning-assisted direction-of-arrival accuracy enhancement technique using oversized lens-loaded cavity. IET Microw. Antennas Propag. 2022, 16, 305–315. [Google Scholar] [CrossRef]
- Olmos, B.; Lupera-Morillo, P.; Llugsi, R.; Jaramillo, E. 3d Doa estimation and the clustering in a multipath environment using root music, esprit and k-means algorithms. In Proceedings of the 2019 International Conference on Information Systems and Software Technologies (ICI2ST), Quito, Ecuador, 13–15 November 2019; pp. 9–15. [Google Scholar]
- Muirragui, C.; Lupera-Morillo, P.; Llugsi, R.; Villamar, V. Optimized performance evaluation of a q-learning hard handover algorithm for load balancing. In Proceedings of the 2021 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, 7–8 October 2021; pp. 74–79. [Google Scholar]
- Eranti, P.; Barkana, B. An overview of direction-of-arrival estimation methods using adaptive directional time-frequency distributions. Electronics 2022, 11, 1321. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Cui, W.; You, J.; Li, H.; Liu, F. DOA-based localization method with multiple screening k-means clustering for multiple sources. Wirel. Commun. Mob. Comput. 2019, 2019, 5643752. [Google Scholar] [CrossRef]
- Ge, S.; Li, S.; Rum, S. Deep learning approach in doa estimation: A systematic literature review. Artif. Intell. Edge Comput. Mob. Inf. Syst. 2021, 2021, 6392875. [Google Scholar] [CrossRef]
- Jenkinson, G.; Abbasi, M.; Molaei, A.; Yurduseven, O.; Fusco, V. Deep learning-enabled improved direction-of-arrival estimation technique. Electronics 2023, 12, 3505. [Google Scholar] [CrossRef]
- Huang, Y. Antennas: From Theory to Practice; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Longley, P.; Goodchild, M.; Maguire, D.; Rhind, D. Geographic Information Science and Systems, 4th ed; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Chen, B.; Ma, J.; Zhang, L.; Zhou, J.; Fan, J.; Lan, H. Research progress of wireless positioning methods based on RSSI. Electronics 2024, 13, 360. [Google Scholar] [CrossRef]
- Li, B.; Liu, S.; Zhao, D.; Hu, B.-J. DOA Estimation of unknown emitter signal based on time reversal and coprime array. Sensors 2019, 19, 1398. [Google Scholar] [CrossRef]
- Palomo-Alonso, A.; Casillas-Pérez, D.; Jiménez-Fernández, S.; Portilla-Figueras, A.; Salcedo-Sanz, S. CoSeNet: A novel approach for optimal segmentation of correlation matrices. Digit. Signal Process. 2023, 144, 104270. [Google Scholar] [CrossRef]
- Li, J.; Wang, F.; Jiang, D. DOA estimation based on real-valued cross correlation matrix of coprime arrays. Sensors 2017, 17, 638. [Google Scholar] [CrossRef] [PubMed]
- Hasib, M.; Kandeepan, S.; Rowe, W.; Al-Hourani, A. Directionof-arrival (doa) estimation performance for satellite applications in a multipath environment with rician fading and spatial correlation. Sensors 2023, 23, 5458. [Google Scholar] [CrossRef] [PubMed]
- Sathish, K.; Chinthaginjala, R.; Kim, W.; Rajesh, A.; Corchado, J.M.; Abbas, M. Underwater wireless sensor networks with rssi-based advanced efficiency-driven localization and unprecedented accuracy. Sensors 2023, 23, 6973. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Tiang, J.; Mahmud, A.; Gwo, C.; Do, D. Deep reinforcement learning-based adaptive beam tracking and resource allocation in 6g vehicular networks with switched beam antennas. Electronics 2023, 12, 2294. [Google Scholar] [CrossRef]
- Cui, L.; Zhao, P.; Li, X.; Li, B.; Wang, K.; Bu, X.; Fei, S.; Yang, Y. A new model for doa estimation and its solution by multi-target intermittent particle swarm optimization. Syst. Sci. Control Eng. 2021, 9, 87–95. [Google Scholar] [CrossRef]
Acronym | Definition |
---|---|
BSLAT | Base Station Latitude |
BSLON | Base Station Longitude |
MLAT | Mobile Latitude |
MLON | Mobile Longitude |
RSSI | Received Signal Strength Indicator |
RSSIstrongest | Received Strongest Signal Intensity |
RSRQ | Reference Signals Received Power |
RSSNr | Reference Signal Signal-to-Noise Ratio |
D | Distance |
DoA | Direction of Arrival |
Case | Considerations | θ Value |
---|---|---|
1 | BSLAT < MLAT ∧ BSLON < MLON | θ = 90° − α |
2 | BSLAT > MLAT ∧ BSLON < MLON | θ = 90° + α |
3 | BSLAT > MLAT ∧ BSLON > MLON | θ = 270° − α |
4 | BSLAT < MLAT ∧ BSLON > MLON | θ = 270° + α |
Range | Equation 1 | Evaluation | |
---|---|---|---|
RMSE | R2 | ||
0°–65° | DoA = 129.6 − 3.74 × 10−7(D × RSRQ × RSSI × RSSIstrongest − RSSI) | 15.78 | 0.37 |
65°–80° | DoA= 48.770943 − 0.476991 × RSSI + 0.103709 × RSRQ | 3.63 | 0.15 |
80°–170° | DoA = 244.19740 − 0.53929 × RSSI − 0.80461 × RSRQ | 16.68 | 0.54 |
170°–250° | DoA = 326 − 1.065 × 10−6(D × RSRQ × RSSI × RSSIstrongest − RSSI) | 13.15 | 0.71 |
250°–305° | DoA = 114.6 + 7.454 × 10−6(D × RSRQj × RSSI × RSSIstrongest − RSSI) | 10.71 | 0.47 |
305°–360° | DoA = 321.7 + 3.416 × 10−4D2 + 1.802 × 10−38 × RSSI20strongest + 1.54 × 10−5 × RSSI3 | 14.54 | 0.26 |
Range | Equation 1 | Evaluation | |
---|---|---|---|
RMSE | R2 | ||
0°–150° | (−4.969 × 10−7 × D + 9.921 × 10−5 × RSSI) × RSSNr × RSRQ × RSSIstrongest × RSSI − 3.487 × 103 | 17.93 | 0.89 |
150°–220° | 2.693 × 10−7 × RSSNr × RSSI × RSSIstrongest × RSRQ × D + 3.737 × 103 | 13.12 | 0.55 |
220°–300° | (−1.528 × 10−3 × D−8.819 × 10−4 × RSSNr) × RSSI × RSSIstrongest + 1.791 × 10−8 × RSSNr × RSRQ × D × RSSI × RSSIstrongest + 2.136 × 103 | 17.27 | 0.34 |
300°–360° | (−8.540 × 10−5 × RSSIstrongest − 1.791 × 10−5 × D) × RSSNr × RSRQ × RSSI + 3.270 × 103 | 14.41 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, L.A.; Lomas, I.; Guachalá, L.; Lupera-Morillo, P.; Álvarez, R.; Llugsi, R. Direction-of-Arrival (DOA) Estimation Based on Real Field Measurements and Modified Linear Regression. Eng. Proc. 2024, 77, 11. https://doi.org/10.3390/engproc2024077011
Flores LA, Lomas I, Guachalá L, Lupera-Morillo P, Álvarez R, Llugsi R. Direction-of-Arrival (DOA) Estimation Based on Real Field Measurements and Modified Linear Regression. Engineering Proceedings. 2024; 77(1):11. https://doi.org/10.3390/engproc2024077011
Chicago/Turabian StyleFlores, Luis Antonio, Ismael Lomas, Lenin Guachalá, Pablo Lupera-Morillo, Robin Álvarez, and Ricardo Llugsi. 2024. "Direction-of-Arrival (DOA) Estimation Based on Real Field Measurements and Modified Linear Regression" Engineering Proceedings 77, no. 1: 11. https://doi.org/10.3390/engproc2024077011
APA StyleFlores, L. A., Lomas, I., Guachalá, L., Lupera-Morillo, P., Álvarez, R., & Llugsi, R. (2024). Direction-of-Arrival (DOA) Estimation Based on Real Field Measurements and Modified Linear Regression. Engineering Proceedings, 77(1), 11. https://doi.org/10.3390/engproc2024077011