Deep Transfer Learning Approach in Smartwatch-Based Fall Detection Systems †
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Accelerometer Signals Processing Technique
3.2. Model Selection for Transfer Learning
3.3. Dataset
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Falls, Fact Sheet. 2021. Available online: https://www.who.int/en/news-room/fact-sheets/detail/falls (accessed on 3 July 2024).
- World Health Organization; Ageing and Life Course Unit. WHO Global Report on Falls Prevention in Older Age; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Legters, K. Fear of falling. Phys. Ther. 2002, 82, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.J.; Wayne, S.J.; Romero, L.J.; Baumgartner, R.N.; Garry, P.J. Fear of falling and restriction of mobility in elderly fallers. Age Ageing 1997, 26, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ellul, J.; Azzopardi, G. Elderly fall detection systems: A literature survey. Front. Robot. 2020, 7, 71. [Google Scholar] [CrossRef]
- Thakur, N.; Han, C.Y. A study of fall detection in assisted living: Identifying and improving the optimal machine learning method. J. Sens. Actuator Netw. 2021, 10, 39. [Google Scholar] [CrossRef]
- Singh, A.; Rehman, S.U.; Yongchareon, S.; Chong, P.H.J. Sensor technologies for fall detection systems: A review. IEEE Sens. J. 2020, 20, 6889–6919. [Google Scholar] [CrossRef]
- Yhdego, H.; Paolini, C.; Audette, M. Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study. Appl. Sci. 2023, 13, 4988. [Google Scholar] [CrossRef]
- Miaou, S.G.; Shih, F.C.; Huang, C.Y. A smart vision-based human fall detection system for telehealth applications. In Proceedings of the Third IASTED International Conference on Telehealth (Telehealth07), Montreal, QC, Canada, 30 May–1 June 2007; pp. 7–12. [Google Scholar]
- Sase, P.S.; Bhandari, S.H. Human fall detection using depth videos. In Proceedings of the 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, Delhi, 22–23 February 2018; pp. 546–549. [Google Scholar]
- Clemente, M.; Li, F.; Valero, M.; Song, W. Smart Seismic Sensing for Indoor Fall Detection, Location, and Notification. IEEE J. Biomed. Health Inform. 2020, 24, 524–532. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, W.; Chen, H.; Wang, L.; Wu, K. G-Fall: Device-free and Training-free Fall Detection with Geophones. In Proceedings of the 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Boston, MA, USA, 10–13 June 2019; pp. 1–9. [Google Scholar]
- Vacher, M.; Bouakaz, S.; Bobillier-Chaumon, M.-E.; Aman, F.; Khan, R.A.; Bekkadja, S.; Portet, F.; Guillou, E.; Rossato, S.; Lecouteux, B. The CIRDO Corpus: Comprehensive Audio/Video Database of Domestic Falls of Elderly People. In Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016), Portorož, Slovenia, 23–28 May 2016; pp. 1389–1396. [Google Scholar]
- Fatima, M.; Yousaf, M.H.; Yasin, A.; Velastin, S.A. Unsupervised fall detection approach using human skeletons. In Proceedings of the 2021 International Conference on Robotics and Automation in Industry (ICRAI), Rawalpindi, Pakistan, 26–27 October 2021; pp. 1–6. [Google Scholar]
- Ramirez, H.; Velastin, S.A.; Meza, I.; Fabregas, E.; Makris, D.; Farias, G. Fall Detection and Activity Recognition Using Human Skeleton Features. IEEE Access 2021, 9, 33532–33542. [Google Scholar] [CrossRef]
- Asif, U.; Mashford, B.; Cavallar, S.V.; Yohanandan, S.; Roy, S.; Tang, J.; Harrer, S. Privacy Preserving Human Fall Detection Using Video Data. In Proceedings of the Machine Learning for Health NeurIPS Workshop (PMLR), PMLR 116, Virtual, 11 December 2020; pp. 39–51. [Google Scholar]
- Wang, R.D.; Zhang, Y.L.; Dong, L.P.; Lu, J.W.; Zhang, Z.Q.; He, X. Fall detection algorithm for the elderly based on human characteristic matrix and SVM. In Proceedings of the 2015 15th International Conference on Control, Automation and Systems (ICCAS), Busan, Republic of Korea, 13–16 October 2015; pp. 1190–1195. [Google Scholar]
- Liu, L.; Hou, Y.; He, J.; Lungu, J.; Dong, R. An Energy-Efficient Fall Detection Method Based on FD-DNN for Elderly People. Sensors 2020, 20, 4192. [Google Scholar] [CrossRef]
- Nahian, M.J.A.; Ghosh, T.; Banna, H.A.; Aseeri, M.A.; Uddin, M.N.; Ahmed, M.R.; Mahmud, M.; Kaiser, M.S. Towards an Accelerometer-Based Elderly Fall Detection System Using Cross-Disciplinary Time Series Features. IEEE Access 2021, 9, 39413–39431. [Google Scholar] [CrossRef]
- Lin, C.-L.; Chiu, W.-C.; Chu, T.-C.; Ho, Y.-H.; Chen, F.-H.; Hsu, C.-C.; Hsieh, P.-H.; Chen, C.-H.; Lin, C.-C.K.; Sung, P.-S.; et al. Innovative Head-Mounted System Based on Inertial Sensors and Magnetometer for Detecting Falling Movements. Sensors 2020, 20, 5774. [Google Scholar] [CrossRef] [PubMed]
- Fall Detection. Available online: https://www.lively.com/services-apps/fall-detection/ (accessed on 3 July 2024).
- Protection in and Away from the Home. Available online: https://www.bayalarmmedical.com/medical-alert-system/bundle/ (accessed on 3 July 2024).
- Use Fall Detection with Apple Watch. Available online: https://support.apple.com/en-us/HT208944 (accessed on 3 July 2024).
- Ngu, A.; Wu, Y.; Zare, H.; Polican, A.; Yarbrough, B.; Yao, L. Fall detection using smartwatch sensor data with accessor architecture. Proceedings of Smart Health: International Conference (ICSH), Hong Kong, China, 26–27 June 2017; pp. 81–93. [Google Scholar]
- Wu, X.; Zheng, Y.; Chu, C.H.; Cheng, L.; Kim, J. Applying deep learning technology for automatic fall detection using mobile sensors. Biomed. Signal Process. Control. 2022, 72, 103355. [Google Scholar] [CrossRef]
- Şengül, G.; Karakaya, M.; Misra, S.; Abayomi-Alli, O.O.; Damaševičius, R. Deep learning based fall detection using smartwatches for healthcare applications. Biomed. Signal Process. Control. 2022, 71, 103242. [Google Scholar] [CrossRef]
- Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.; Rivera, C.C. SmartFall: A smartwatch-based fall detection system using deep learning. Sensors 2018, 18, 3363. [Google Scholar] [CrossRef]
- Fitbit Sense. Available online: https://www.fitbit.com/global/us/products/smartwatches/sense (accessed on 3 July 2024).
- Samsung Galaxy A32. Available online: https://www.samsung.com/it/smartphones/galaxy-a/galaxy-a32-5g-white-128gb-sm-a326bzwveue/ (accessed on 3 July 2024).
- Bozinovski, S. Reminder of the first paper on transfer learning in neural networks, 1976. Informatica 2020, 44, 17. [Google Scholar] [CrossRef]
- Najmi, A.H.; Sadowsky, J. The continuous wavelet transform and variable resolution time-frequency analysis. Johns Hopkins Apl Tech. Dig. 1997, 18, 134–140. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- WEDA-FALL. Available online: https://github.com/joaojtmarques/WEDA-FALL (accessed on 3 July 2024).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Spinger: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Marques, J.; Moreno, P. Online fall detection using wrist devices. Sensors 2023, 23, 1146. [Google Scholar] [CrossRef]
- Kim, J.K.; Lee, K.; Hong, S.G. Detection of important features and comparison of datasets for fall detection based on wrist-wearable devices. Expert Syst. Appl. 2023, 234, 121034. [Google Scholar] [CrossRef]
- Vavoulas, G.; Pediaditis, M.; Chatzaki, C.; Spanakis, E.G.; Tsiknakis, M. The Mobifall Dataset: Fall detection and classification with a smartphone. Int. J. Monit. Surveill. Technol. Res. (IJMSTR) 2014, 2, 44–56. [Google Scholar] [CrossRef]
- Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A Fall and Movement Dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef]
- Medrano, C.; Igual, R.; Plaza, I.; Castro, M. Detecting falls as novelties in acceleration patterns acquired with smartphones. PLoS ONE 2014, 9, e94811. [Google Scholar] [CrossRef]
Paper | Method | Accuracy (%) | Limitations |
---|---|---|---|
[24] | SVM | 93.8 | Only data from young and healthy individuals |
[25] | GRU | 90.5 | Data from seven young subjects |
[26] | BiLSTM | 97.35 | End-users aged between 19 and 25 years |
[27] | GRU | 79 | Not high accuracy, but more general training data |
Hyperparameter | Model Architecture | ||
---|---|---|---|
DenseNet201 | VGG16 | ResNet50 | |
Learning rate | 0.002 | 0.001 | 0.002 |
Batch size | 128 | 128 | 128 |
Optimizer | Adam | Adam | Adam |
Output activation layer | softmax | softmax | softmax |
Number of epochs | 50 | 70 | 50 |
Types of Falls | Types of ADL |
---|---|
Fall forward while walking caused by a slip | Walking |
Lateral fall while walking caused by a slip | Jogging |
Fall backward while walking caused by a slip | Walking up and downstairs |
Fall forward while walking caused by a trip | Sitting on a chair, wait a moment, and get up |
Fall backward when trying to sit down | Sitting a moment, attempt to get up and collapse into a chair |
Fall forward while sitting, caused by fainting or falling asleep | Crouching (bending at the knees), tie shoes, and get up |
Fall backward while sitting, caused by fainting or falling asleep | Stumble while walking |
Lateral fall while sitting, caused by fainting or falling asleep | Gently jump without falling (trying to reach high object) |
Hit table with hand | |
Clapping Hands | |
Opening and closing door |
Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
DenseNet201 | 0.9756 | 0.9743 | 0.9674 | 0.9741 |
VGG16 | 0.9524 | 0.9614 | 0.9520 | 0.9686 |
ResNet50 | 0.9619 | 0.9713 | 0.9620 | 0.9750 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, A.; Manni, A.; Rescio, G.; Siciliano, P.; Caroppo, A. Deep Transfer Learning Approach in Smartwatch-Based Fall Detection Systems. Eng. Proc. 2024, 78, 2. https://doi.org/10.3390/engproc2024078002
Leone A, Manni A, Rescio G, Siciliano P, Caroppo A. Deep Transfer Learning Approach in Smartwatch-Based Fall Detection Systems. Engineering Proceedings. 2024; 78(1):2. https://doi.org/10.3390/engproc2024078002
Chicago/Turabian StyleLeone, Alessandro, Andrea Manni, Gabriele Rescio, Pietro Siciliano, and Andrea Caroppo. 2024. "Deep Transfer Learning Approach in Smartwatch-Based Fall Detection Systems" Engineering Proceedings 78, no. 1: 2. https://doi.org/10.3390/engproc2024078002
APA StyleLeone, A., Manni, A., Rescio, G., Siciliano, P., & Caroppo, A. (2024). Deep Transfer Learning Approach in Smartwatch-Based Fall Detection Systems. Engineering Proceedings, 78(1), 2. https://doi.org/10.3390/engproc2024078002