Analysis of a 40-Story Office Building Combining a Post Tensioned Flat Slab with Separated Gravity Lateral Resisting Implementation †
Abstract
:1. Introduction
2. Research Method
- the design of the columns, beams and slab, according to SNI 2847:2019 and SNI 1726:2019, for the conventional structure and the PTFS structure,
- the structure response of the conventional structure and the PTFS structure,
- the most efficient tendon layout for the PTFS structure
- a comparative analysis of the material volume and a cost analysis of the conventional structure and the PTFS structure.
3. Result and Discussions
4. Conclusions
- Structural response: Post-tensioned flat-slab structures exhibit higher values for the story drift and displacement, compared to conventional structures. On the other hand, conventional structures demonstrate greater values for the story shear and overturning moment. The structural response remains consistent across different tendon layout variations despite the slight differences between them.
- Material savings: The use of the post-tensioned flat slab results in a significant reduction in materials, with a 22.79% reduction in reinforcing steel bars, 10.08% in concrete, and 22.54% in formwork.
- Cost-Effectiveness: In terms of material, bar reinforcement installation, casting, and post-tensioned installation, post-tensioned flat slab structures prove to be more cost-effective than conventional structures. The overall structural costs are reduced by up to 6.15%, compared to conventional structures.
- SGLR system: When designing high-rise buildings, particularly those combining post-tensioned flat slabs as part of the structural system, it is essential to consider the separated gravity lateral resisting (SGLR) system. This approach ensures that the flat slab is not designed to resist lateral loads. In the designing process, it is important to consider deformation compatibility in the analysis to ensure ductile flexural yielding in the structure system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, F. Design and Analysis of Tall and Complex Structures; Castelnovo, S., Ed.; Butterworth-Heinemann: Cambridge, UK, 2018; ISBN 9780081010181. [Google Scholar]
- ACI. ACI 318-19 (Building Code Requirements for Structural Concrete and Commentary); American Concrete Institute: Indianapolis, IN, USA, 2019. [Google Scholar]
- BSN. SNI 1726:2019 (Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung Dan Nongedung); Badan Standardisasi Nasional: Jakarta, Indonesia, 2019. [Google Scholar]
- Moehle, J.P.; Hooper, J.D.; Lubke, C.D. Seismic Design of Reinforced Concrete Special Moment Frames: A Guide for Practicing Engineers; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2008. [Google Scholar]
- Wight, J.K. Reinforced Concrete Mechanics and Design, 7th ed.; Stark, H., Disanno, S., Eds.; Pearson Education: Upper Saddle River, NJ, USA, 2016; ISBN 9780133485967. [Google Scholar]
- Darwin, D.; Dolan, C.W. Design of Concrete Structures, 15th ed.; Charles, W., Nilson, A.H., Eds.; McGraw-Hill Education: New York, NY, USA, 2016; ISBN 9780073397948. [Google Scholar]
- Vanshaj, K.; Narayan, K. Seismic Response of Multistorey Flat Slab Building with and without Shear Wall. Int. Res. J. Eng. Technol. 2017, 4, 573–578. [Google Scholar]
- ASCE. ASCE 7-16 (Minimum Design Loads and Associated Criteria for Buildings and Other Structures); American Society of Civil Engineers (ASCE): Reston, VA, USA, 2017; ISBN 9780784479964. [Google Scholar]
- Ibrahim, S.; Ravari, S.O.; Resatoglu, R. Comparative Study of Analysis and Cost of Flat Slab and Conventional Slab Structures in Somalia-Mogadishu. Technol. Eng. Math. (EPSTEM) 2022, 21, 228–236. [Google Scholar] [CrossRef]
- Favier, A.; De Wolf, C.; Scrivener, K.; Habert, G. ETH Library A Sustainable Future for the European Cement and Concrete Industry Technology Assessment for Full Decarbonisation of the Industry by 2050; ETH: Zurich, Switzerland, 2018. [Google Scholar]
- Manvi, A.; Gouripur, S.; Sambrekar, P.; Kulkurni, K.S. Cost Comparison Between Conventional and Flat Slab Structures. Int. Res. J. Eng. Technol. 2015, 2, 1218–1223. [Google Scholar]
- Satwika, V.; Jaiswal, M. Comparison of RCC and Post-Tensioned Flat Slabs Using ETABS. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2022; Volume 982. [Google Scholar]
- Yankelevsky, D.Z.; Karinski, Y.S.; Brodsky, A.; Feldgun, V.R. Dynamic Punching Shear of Impacting RC Flat Slabs with Drop Panels. Eng. Fail. Anal. 2021, 129, 105682. [Google Scholar] [CrossRef]
- Apostolska, R.P.; Necevska-Cvetanovska, G.S.; Cvetanovska, J.P.; Mircic, N. Seismic Performance of Flat-Slab Building Structural Systems. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Reddy, J. Comparative Study of Post Tensioned and RCC Flat Slab in Multi-Storey Commercial Building. Int. Res. J. Eng. Technol. 2017, 4, 238–242. [Google Scholar]
- Srilaxmi, V.; Manju, K.; Vijaya, M. A Case Study on Pre-Tensioning & Post Tensioning Systems of a Prestressed Concrete. Int. J. Eng. Technol. Manag. Res. 2020, 5, 249–254. [Google Scholar] [CrossRef]
- Ahmad, O. Financial Comparative Study between Post-Tensioned and Reinforced Concrete Flat Slab. Int. J. Adv. Eng. Sci. Appl. 2022, 3, 1–6. [Google Scholar] [CrossRef]
- Primakov, A.; Leo, D.E. Kajian Efisiensi Sistem Flat Slab Dengan Metode Post-Tension Dan Konvensional. JMTS: J. Mitra Tek. Sipil 2019, 2, 133. [Google Scholar] [CrossRef]
- PTA. The Post-Tensioning Association PTA Guidance Note GN04; The Post Tensioning Association: London, UK, 2011. [Google Scholar]
- Bahoria, B.V.; Parbat, D.K. Analysis and Design of RCC and Post-Tensioned Flat Slabs Considering Seismic Effect. Int. J. Eng. Technol. 2013, 5, 10–13. [Google Scholar] [CrossRef]
- Chung, K.; Park, J.; Kim, Y.; Kim, D. Application of Post-Tension Technology on Tall Buildings. Int. J. High-Rise Build. 2017, 6, 285–296. [Google Scholar] [CrossRef]
- Khatib, M.; Saleh, Z.A. Numerical Evaluation of Punching Shear Capacity Between Bonded and Unbonded Post-Tensioned Slab Using Inverted-U Shape Reinforcement. In Proceedings of the 9th International Conference on Civil Engineering; Feng, G., Prisco, M.d., Chen, S.-H., Vayas, I., Shukla, S.K., Sharma, A., Kumar, N., Wang, C.M., Eds.; Springer Nature: Singapore, 2023; pp. 595–610. [Google Scholar]
- More, R.S.; Sawant, V.S. Analysis of Flat Slab. Int. J. Science and Research (IJSR). 2015, 4, 98–101. [Google Scholar]
- Dahale, P.P. Seismic Behaviour of Flat Slab Building with Shear Wall According to I.S.1893. Int. J. Civ. Eng. Technol. (IJCIET) 2018, 9, 955–963. [Google Scholar]
- Zhao, H.; Qian, X.Y.; Liu, X.G.; Chen, H.B.; Tao, M.X. Dynamic Responses of Multi-Story Structural Systems with Separated Gravity and Lateral Resisting Systems under Seismic Action Considering Connection Semi-Rigidity Effects. Eng. Struct. 2024, 302, 117386. [Google Scholar] [CrossRef]
- Peng, W.J.; Li, Z.A.; Tao, M.X. Evaluation and Story Drift Ratio Limits of Structures with Separated Gravity- and Lateral-Load-Resisting Systems Using Pushover Analysis. J. Build. Eng. 2023, 76, 107223. [Google Scholar] [CrossRef]
- SNI 2052:2017; Baja Tulangan Beton. Badan Standardisasi Nasional: Jakarta, Indonesia, 2017.
- SNI 1727:2020; Beban Desain Minimum Dan Kriteria Terkait Untuk Bangunan Gedung Dan Struktur Lain. Badan Standardisasi Nasional: Jakarta, Indonesia, 2020.
- CSI. ETABS User’s Guide; CSI: Las Vegas, NV, USA, 2016. [Google Scholar]
- Nawy, E.G. Prestressed Concrete, 5th ed.; Horton, M.J., Opaluch, W., Disanno, S., Sandin, D., Eds.; Pearson: Hoboken, NJ, USA, 2009; ISBN 9780136081500. [Google Scholar]
- SNI 2847-2019; Persyaratan Beton Struktural Untuk Bangunan Gedung Dan Penjelasan. Badan Standardisasi Nasional: Jakarta, Indonesia, 2019.
- Ranjan Rath, S.; Kumar Sethy, S.; Kumar Dubey, M. Comparative Study on Analysis and Designing of Post-Tensioned Flat Slab Vs Conventional Slab. Int. J. Res. Advent Technol. 2019, 7, 192–198. [Google Scholar] [CrossRef]
- Borkar, S.; Dabhekar, K.; Khedikar, I.; Jaju, S. Analysis of Flat Slab Structures in Comparison with Conventional Slab Structures. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 822. [Google Scholar]
- PUPR. Peraturan Menteri PUPR Republik Indonesia Nomor 1 Tahun 2022; PUPR: Jakarta, Indonesia, 2022. [Google Scholar]
Material | Specification | Value |
---|---|---|
Concrete | Compressive strength after 28 days (fc′) | 35 MPa |
Steel | Yield strength (fy) | 420 MPa |
Tendon | Ultimate strength (fpk) | 1860 MPa |
Strand | Type | 0.6″ |
Type of Load | Specification | Value | |
---|---|---|---|
Dead load | Concrete Reinforcing steel | 24 kN/m3 7850 kg/m3 | |
Super imposed dead load | Mechanical, electrical, plumbing | 1.4 kN/m3 | |
Live load | Live load typical floor Roof live | 2.4 kN/m2 0.96 kN/m2 | |
Rain load | Rain load | 0.6 kN/m2 | |
Wind load | Windward coefficient Leeward coefficient Wind speed Gust and directionality factor | 0.8 0.5 100 mph 0.85 | |
Earthquake load | Risk category Importance factor Site class Spectral response acceleration parameter Design spectral acceleration parameter Site coefficient Response modification coefficient Overstrength factor Deflection amplification factor | Ss S1 SDS SD1 Fa Fv R Ω0 Cd | II 1 SE 0.9407 0.437 0.72 0.68 1.147 2.236 7 2.5 5.5 |
Stage | Categories | X Direction | Y Direction | ||
---|---|---|---|---|---|
Stress (MPa) | % | Stress (MPa) | % | ||
Initial | Initial stress, fpi (0.75 fpu) Anchorage-seating loss (A) Friction loss (F) | 1395 −114.653 −88.591 | 100% −8% −6% | 1395 −154.781 −74.437 | 100% −11% −5% |
Adjusted initial stress, fpi (post tensioned) | 1191.756 | 85% | 1165.782 | 84% | |
Transfer (24 h) | Elastic shortening loss (ES) Steel relaxation loss (R) | 0 −12.123 | 0% −1% | 0 −12.123 | 0% −1% |
Net stress at transfer stage (fpi net) | 1179.633 | 85% | 1153.659 | 83% | |
Service (30 days) | Elastic shortening loss (ES) Creep loss (CR) Shrinkage loss (SH) Steel relaxation loss (R) | 0 −6.658 37.900 −5.989 | 0% 0% 3% 0% | 0 −1.406 37.900 −5.270 | 0% 0% 3% 0% |
Effective stress (fpe) | 1204.886 | 86% | 1184.883 | 85% | |
At time t (5 years) | Steel relaxation loss | −8.110 | −1% | −7.414 | −1% |
Net stress at time t | 1196.776 | 86% | 1177.469 | 84% |
Direction | Condition | Axial-Flexural | Value | |||
---|---|---|---|---|---|---|
P (kN) | M2 (kN.m) | M1 (kN.m) | V1 (kN) | V2 (kN) | ||
X | P abs max M2 abs max M3 abs max P abs max | 851.2487 125.1245 219.8987 −848.869 | 172.0424 3942.6726 2242.2969 −149.7837 | 2.0004 4.5188 6.3988 6.6664 | 0.187 0.5324 1.3482 3.374 | 86.48 1602.2914 667.3224 −75.3078 |
Y | M2 abs max M3 abs max | −106.859 −106.2382 | −275.1429 226.8361 | 3121.9495 3123.2685 | 1258.726 1259.369 | −107.2534 87.8354 |
Element | Dimension (mm) | |||
---|---|---|---|---|
Floors 1–10 | Floors 11–20 | Floors 21–30 | Floors 31–40 | |
Secondary beam | 300 × 600 | 250 × 500 | 250 × 400 | 250 × 400 |
Primary beam | 450 × 900 | 450 × 900 | 450 × 900 | 400 × 800 |
Typical column | 1500 × 1500 | 1200 × 1200 | 800 × 800 | 600 × 600 |
Column near Shear walls | 1500 × 1500 | 900 × 900 | 800 × 800 | 800 × 800 |
Slab | Thickness: 150 mm | |||
Shear walls | Thickness: 500 mm |
Element | Dimension (mm) | |||
---|---|---|---|---|
Floors 1–10 | Floors 11–20 | Floors 21–30 | Floors 31–40 | |
Perimeter beam | 600 × 900 | 600 × 900 | 500 × 800 | 500 × 800 |
Perimeter column | 1200 × 1200 | 450 × 900 | 800 × 800 | 800 × 800 |
Typical column | 1100 × 1100 | 900 × 900 | 750 × 750 | 500 × 500 |
Column near shear walls | 1550 × 1550 | 1200 × 1200 | 900 × 900 | 850 × 850 |
Slab | Thickness: 200 mm | |||
Drop panel | Thickness: 350 mm | |||
Shear walls | Thickness: 500 mm | |||
Tendon | 38.17 kg/m3 |
Unit Work | Unit Price |
---|---|
Slab reinforcement/kg | IDR 19,839.80 |
Column reinforcement/kg | IDR 19,018.24 |
Beam reinforcement/kg | IDR 19,018.24 |
Shear wall reinforcement/kg | IDR 19,018.24 |
Column formwork installation/m2 | IDR 280,163.00 |
Beam formwork installation/m2 | IDR 267,067.32 |
Slab formwork installation/m2 | IDR 268,582.50 |
Shear wall formwork installation/m2 | IDR 274,094.83 |
Dismantle the formwork/m2 | IDR 11,385.00 |
Casting/m3 | IDR 1,673,606.50 |
Tendon/ton | IDR 73,910,500.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andriani, A.P.; Sjah, J.; Fathoni, I.N.; Handika, N. Analysis of a 40-Story Office Building Combining a Post Tensioned Flat Slab with Separated Gravity Lateral Resisting Implementation. Eng. Proc. 2025, 84, 26. https://doi.org/10.3390/engproc2025084026
Andriani AP, Sjah J, Fathoni IN, Handika N. Analysis of a 40-Story Office Building Combining a Post Tensioned Flat Slab with Separated Gravity Lateral Resisting Implementation. Engineering Proceedings. 2025; 84(1):26. https://doi.org/10.3390/engproc2025084026
Chicago/Turabian StyleAndriani, Alexandra Patricia, Jessica Sjah, Indra Nurudin Fathoni, and Nuraziz Handika. 2025. "Analysis of a 40-Story Office Building Combining a Post Tensioned Flat Slab with Separated Gravity Lateral Resisting Implementation" Engineering Proceedings 84, no. 1: 26. https://doi.org/10.3390/engproc2025084026
APA StyleAndriani, A. P., Sjah, J., Fathoni, I. N., & Handika, N. (2025). Analysis of a 40-Story Office Building Combining a Post Tensioned Flat Slab with Separated Gravity Lateral Resisting Implementation. Engineering Proceedings, 84(1), 26. https://doi.org/10.3390/engproc2025084026