Performance Analysis of a 50 MW Solar PV Installation at BUI Power Authority: A Comparative Study between Sunny and Overcast Days
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Photovoltaic Plant
2.2. Technical Design
2.3. Performance Related-Indices
2.3.1. Reference Yield
2.3.2. System or Array Yield
2.3.3. Final Yield
2.3.4. Performance Ratio (PR)
2.3.5. Capacity Factor
3. Results and Discussion
3.1. Daily Solar Radiation Data Analysis
3.2. Daily Ambient Temperature and AC Energy Fed into the Grid (Sunny and Overcast Days)
3.3. Performance Ratio (PR)
3.4. Daily Capacity Factor of the Solar PV Plant (Sunniest and Cloudiest)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kougias, I.; Szabó, S.; Monforti-Ferrario, F.; Huld, T.; Bódis, K. A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems. Renew. Energy 2016, 87, 1023–1030. [Google Scholar] [CrossRef]
- Syahputra, R.; Soesanti, I. Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Rep. 2021, 7, 472–490. [Google Scholar] [CrossRef]
- Lee, N.; Grunwald, U.; Rosenlieb, E.; Mirletz, H.; Aznar, A.; Spencer, R.; Cox, S. Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renew. Energy 2020, 162, 1415–1427. [Google Scholar] [CrossRef]
- Fuster-Palop, E.; Vargas-Salgado, C.; Ferri-Revert, J.C.; Payá, J. Performance analysis and modelling of a 50 MW grid-connected photovoltaic plant in Spain after 12 years of operation. Renew. Sustain. Energy Rev. 2022, 170, 112968. [Google Scholar] [CrossRef]
- Piancó, F.; Moraes, L.; Prazeres, I.D.; Lima, A.G.G.; Bessa, J.G.; Micheli, L.; Fernández, E.; Almonacid, F. Hydroelectric operation for hybridization with a floating photovoltaic plant: A case of study. Renew. Energy 2022, 201, 85–95. [Google Scholar] [CrossRef]
- Farfan, J.; Breyer, C. Combining floating solar photovoltaic power plants and hydropower reservoirs: A virtual battery of great global potential. Energy Procedia 2018, 155, 403–411. [Google Scholar] [CrossRef]
- Meshram, S.; Agnihotri, G.; Gupta, S. Performance analysis of grid integrated hydro and solar based hybrid systems. Adv. Power Electron. 2013, 2013, 697049. [Google Scholar] [CrossRef]
- Stiubiener, U.; da Silva, T.C.; Trigoso, F.B.M.; da Silva Benedito, R.; Teixeira, J.C. PV power generation on hydro dam’s reservoirs in Brazil: A way to improve operational flexibility. Renew. Energy 2020, 150, 765–776. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.J.; Chang, L.C.; Lee, W.D.; Huang, A.; Xu, C.Y.; Guo, S. An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies. Appl. Energy 2020, 275, 115389. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, C.; Lian, J.; Pang, X.; Qiao, Y.; Chaima, E. Optimal photovoltaic capacity of large-scale hydro-photovoltaic complementary systems considering electricity delivery demand and reservoir characteristics. Energy Convers. Manag. 2019, 195, 597–608. [Google Scholar] [CrossRef]
- Chi, L.; Su, H.; Zio, E.; Qadrdan, M.; Zhou, J.; Zhang, L.; Fan, L.; Yang, Z.; Xie, F.; Zuo, L.; et al. A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model. Energy 2023, 263, 125740. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Fu, Y.; Zhao, N. Energy supply reliability assessment of the integrated energy system considering complementary and optimal operation during failure. IET Gener. Transm. Distrib. 2021, 15, 1897–1907. [Google Scholar] [CrossRef]
- Cui, L.; Amani, S.; Gabr, M.; Kumari, W.G.; Ahmed, A.; Ozcan, H.; Horri, B.A.; Bhattacharya, S. Synergistic Hybrid Marine Renewable Energy Harvest System. Energies 2024, 17, 1240. [Google Scholar] [CrossRef]
- Awan, A.B.; Zubair, M.; Sidhu, G.A.S.; Bhatti, A.R.; Abo-Khalil, A.G. Performance analysis of various hybrid renewable energy systems using battery, hydrogen, and pumped hydro-based storage units. Int. J. Energy Res. 2019, 43, 6296–6321. [Google Scholar] [CrossRef]
- Aziz, M.S.; Ahmed, S.; Saleem, U.; Mufti, G.M. Wind-hybrid power generation systems using renewable energy sources—A review. Int. J. Renew. Energy Res. 2017, 7, 111–127. [Google Scholar] [CrossRef]
- Khare, V. Prediction, investigation, and assessment of novel tidal–solar hybrid renewable energy system in India by different techniques. Int. J. Sustain. Energy 2019, 38, 447–468. [Google Scholar] [CrossRef]
- Jurasz, J.; Ciapała, B. Solar–hydro hybrid power station as a way to smooth power output and increase water retention. Solar Energy 2018, 173, 675–690. [Google Scholar] [CrossRef]
- Silvério, N.M.; Barros, R.M.; Tiago Filho, G.L.; Redón-Santafé, M.; dos Santos, I.F.S.; de Mello Valerio, V.E. Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the São Francisco River basin. Energy Convers. Manag. 2018, 171, 339–349. [Google Scholar] [CrossRef]
- Adepoju, P. Africa Worst Hit by Climate Change Impacts, COP26 Told. Available online: https://www.nature.com/articles/d44148-021-00107-z (accessed on 6 June 2024).
- United Nations Economic Commission for Africa. 17 out of the 20 Countries Most Threatened by Climate Change Are in Africa, But There Are Still Solutions to This Crisis. Available online: https://www.uneca.org/stories/17-out-of-the-20-countries-most-threatened-by-climate-change-are-in-africa%2C-but-there-are (accessed on 6 June 2024).
- Weber, T.; Haensler, A.; Rechid, D.; Pfeifer, S.; Eggert, B.; Jacob, D. Analyzing Regional Climate Change in Africa in a 1.5, 2, and 3 °C Global Warming World. Earths Future 2018, 6, 643–655. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.C. Africa. In Climate Change 2014—Impacts, Adaptation and Vulnerability: Part B: Regional Aspects; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Sissoko, K.; van Keulen, H.; Verhagen, J.; Tekken, V.; Battaglini, A. Agriculture, livelihoods and climate change in the West African Sahel. Reg. Environ. Chang. 2011, 11 (Suppl. S1), 119–125. [Google Scholar] [CrossRef]
- Ijeoma, M.W.; Lewis, C.G.; Chen, H.; Chukwu, B.N.; Carbajales-Dale, M. Technical, economic, and environmental feasibility assessment of solar-battery-generator hybrid energy systems: A case study in Nigeria. Front. Energy Res. 2024, 12, 1397037. [Google Scholar] [CrossRef]
- IEA. Access to Electricity—SDG7: Data and Projections—Analysis—IEA. Available online: https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity (accessed on 4 April 2022).
- Sanchez, R.G.; Kougias, I.; Moner-Girona, M.; Fahl, F.; Jäger-Waldau, A. Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa. Renew. Energy 2021, 169, 687–699. [Google Scholar] [CrossRef]
- Energy Sector Management Assistance Program; Solar Energy Research Institute of Singapore. Where Sun Meets Water; World Bank: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- 2019 Energy Commission. Ghana Renewable Energy Master Plan; Energy Commission: Accra, Ghana, 2019; pp. 1–83. [Google Scholar]
- GWÉNAËLLE DEBOUTTE. First Unit of 250 MW Floating PV Project Comes Online in Ghana—PV Magazine International. PV Magazine. Available online: https://www.pv-magazine.com/2020/12/15/first-unit-of-250-mw-floating-pv-project-comes-online-in-ghana/ (accessed on 1 January 2023).
- Hasan, M. Design 50MW Large Scale PV Power Plant Considering Bangladeshi Climate. Ph.D. Thesis, Uppsala Universitet, Uppsala, Sweden, 2021. [Google Scholar]
- Yakubu, R.O.; Mensah, L.D.; Quansah, D.A. Improving solar photovoltaic installation energy yield using bifacial modules and tracking systems: An analytical approach. Adv. Mech. Eng. 2022, 14, 16878132221139714. [Google Scholar] [CrossRef]
- Yakubu, R.O.; Ankoh, M.T.; Mensah, L.D.; Quansah, D.A.; Adaramola, M.S. Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region. Energies 2022, 15, 8510. [Google Scholar] [CrossRef]
- Ijeoma, M.W.; Chen, H.; Carbajales-Dale, M.; Yakubu, R.O. Techno-Economic Assessment of the Viability of Commercial Solar PV System in Port Harcourt, Rivers State, Nigeria. Energies 2023, 16, 6803. [Google Scholar] [CrossRef]
- Gu, W.; Ma, T.; Li, M.; Shen, L.; Zhang, Y. A coupled optical-electrical-thermal model of the bifacial photovoltaic module. Appl. Energy 2020, 258, 114075. [Google Scholar] [CrossRef]
- Nwoye, C.I.; Emelue, H.U.; Bamidele, F.A.; Owadara, A.B. Empirical Analysis of Performance Efficiency of Monocrystalline Silicon Solar Photovoltaic Module Based on Ambient Temperature and Wind Speed. Int. J. Phys. 2020, 1, 1–5. [Google Scholar]
- Padmavathi, K.; Daniel, S.A. Performance analysis of a 3 MWp grid connected solar photovoltaic power plant in India. Energy Sustain. Dev. 2013, 17, 615–625. [Google Scholar] [CrossRef]
- Adar, M.; Najih, Y.; Gouskir, M.; Chebak, A.; Mabrouki, M.; Bennouna, A. Three PV plants performance analysis using the principal component analysis method. Energy 2020, 207, 118315. [Google Scholar] [CrossRef]
- Mittal, D.; Saxena, B.K.; Rao, K.V.S. Comparison of floating photovoltaic plant with solar photovoltaic plant for energy generation at Jodhpur in India. In Proceedings of the 2017 IEEE International Conference on Technological Advancements in Power and Energy: Exploring Energy Solutions for an Intelligent Power Grid, TAP Energy 2017, Kollam, India, 21–23 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Yakubu, R.O.; Quansah, D.A.; Mensah, L.D.; Ahiataku-togobo, W.; Acheampong, P.; Adaramola, M.S. Comparison of ground-based and floating solar photovoltaic systems performance based on monofacial and bifacial modules in Ghana. Energy Nexus 2023, 12, 100245. [Google Scholar] [CrossRef]
- Nominatim. Reverse Result for 8.27849,-2.23640. Available online: https://nominatim.openstreetmap.org/ui/reverse.html?lat=8.27849&lon=-2.23640&zoom=18 (accessed on 10 August 2024).
- Lujano-Rojas, J.; Dufo-López, R.; Domínguez-Navarro, J.A. Forecasting of electricity prices, demand, and renewable resources. In Genetic Optimization Techniques for Sizing and Management of Modern Power Systems; Elsevier: Amsterdam, The Netherlands, 2023; pp. 201–246. [Google Scholar] [CrossRef]
- Law, E.W.; Prasad, A.A.; Kay, M.; Taylor, R.A. Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting—A review. Solar Energy 2014, 108, 287–307. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change; Cambridge University Press: Cambridge, UK, 2007; Available online: https://assets.cambridge.org/97805217/05967/frontmatter/9780521705967_frontmatter.pdf (accessed on 6 June 2024).
- US EPA. Energy Attribute Certificates (EACs). Available online: https://www.epa.gov/green-power-markets/energy-attribute-certificates-eacs (accessed on 6 June 2024).
- Woyte, A.; Richter, M.; Moser, D.; Reich, N.; Green, M.; Mau, S.; Beyer, H.G. Analytical Monitoring of Grid-Connected Photovoltaic Systems Good Practices for Monitoring and Performance Analysis: IEA PVPS Task 13, Subtask 2: Report IEA PVPS T13-03: 2014; International Energy Agency Photovoltaic Power Systems Program: Paris, France, 2014. [Google Scholar]
- Bhattacharya, T.; Chakraborty, A.K.; Pal, K. Effects of Ambient Temperature and Wind Speed on Performance of Monocrystalline Solar Photovoltaic Module in Tripura, India. J. Sol. Energy 2014, 2014, 817078. [Google Scholar] [CrossRef]
- Veerendra Kumar, D.J.; Deville, L.; Ritter, K.A., III; Raush, J.R.; Ferdowsi, F.; Gottumukkala, R.; Chambers, T.L. Performance Evaluation of 1.1 MW Grid-Connected Solar Photovoltaic Power Plant in Louisiana. Energies 2022, 15, 3420. [Google Scholar] [CrossRef]
- Bolinger, M.; Seel, J.; Wu, M. Maximizing MWh: A statistical analysis of the performance of utility-scale photovoltaic projects in the United States. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017, Washington, DC, USA, 25–30 June 2017; pp. 467–471. [Google Scholar] [CrossRef]
- Aoun, N. Energy and exergy analysis of a 20-MW grid-connected PV plant operating under harsh climatic conditions. Clean Energy 2024, 8, 281–296. [Google Scholar] [CrossRef]
- Meyer, E.L.; Buma, C.L.; Taziwa, R.T. Performance parameters of an off-grid building integrated photovoltaic system in South Africa. In Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 25–29 September 2017; pp. 2450–2455. [Google Scholar]
- Al Mehadi, A.; Nahin-Al-Khurram; Shagor, M.R.K.; Sarder, M.A.I. Optimized seasonal performance analysis and integrated operation of 50MW floating solar photovoltaic system with Kaptai hydroelectric power plant: A case study. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–25. [Google Scholar] [CrossRef]
- Dhimish, M. Thermal impact on the performance ratio of photovoltaic systems: A case study of 8000 photovoltaic installations. Case Stud. Therm. Eng. 2020, 21, 100693. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Aoun, N.; Bouchouicha, K.; Chenni, R. Performance Evaluation of a Mono-Crystalline Photovoltaic Module under Different Weather and Sky Conditions. Int. J. Renew. Energy Res. 2017, 7, 292–297. [Google Scholar]
- Supapo, K.R.M.; Lozano, L.; Querikiol, E.M. Performance Evaluation of an Existing Renewable Energy System at Gilutongan Island, Cebu, Philippines. J. Eng. 2024, 2024, 3131377. [Google Scholar] [CrossRef]
- SMA Solar Technology AG. Performance ratio-Quality factor for the PV plant. Energy Syst. 2016, 1–9. [Google Scholar]
- Kumar, B.S.; Sudhakar, K. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Rep. 2015, 1, 184–192. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Location’s geographical coordinates | 8.26° N, 2.25° W |
Maximum DC power capacity | 50.768 MW |
Inverter capacity | 185 kW |
Number of PV module | 34,093/6480/79,016 |
PV module’s power rating | 380/385/440 Wp |
Maximum AC power capacity | 50 MW |
Number of inverters | 250 |
Number of PV modules per string | 28/29/30 |
Maximum DC input voltage | 34.5 kV |
Number of strings per inverter | 16/17/18 |
Transformer capacity | 6.3 MVA |
Number of Transformer | 8 |
Ground clearance height | 0.8–1.0 m |
Tilt angle | 5–8° |
Orientation | South |
DC/AC ratio | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakubu, R.O.; Ijeoma, M.W.; Yusuf, H.; Abdulazeez, A.A.; Acheampong, P.; Carbajales-Dale, M. Performance Analysis of a 50 MW Solar PV Installation at BUI Power Authority: A Comparative Study between Sunny and Overcast Days. Electricity 2024, 5, 546-561. https://doi.org/10.3390/electricity5030027
Yakubu RO, Ijeoma MW, Yusuf H, Abdulazeez AA, Acheampong P, Carbajales-Dale M. Performance Analysis of a 50 MW Solar PV Installation at BUI Power Authority: A Comparative Study between Sunny and Overcast Days. Electricity. 2024; 5(3):546-561. https://doi.org/10.3390/electricity5030027
Chicago/Turabian StyleYakubu, Rahimat Oyiza, Muzan Williams Ijeoma, Hammed Yusuf, Abdulazeez Alhaji Abdulazeez, Peter Acheampong, and Michael Carbajales-Dale. 2024. "Performance Analysis of a 50 MW Solar PV Installation at BUI Power Authority: A Comparative Study between Sunny and Overcast Days" Electricity 5, no. 3: 546-561. https://doi.org/10.3390/electricity5030027
APA StyleYakubu, R. O., Ijeoma, M. W., Yusuf, H., Abdulazeez, A. A., Acheampong, P., & Carbajales-Dale, M. (2024). Performance Analysis of a 50 MW Solar PV Installation at BUI Power Authority: A Comparative Study between Sunny and Overcast Days. Electricity, 5(3), 546-561. https://doi.org/10.3390/electricity5030027