Vitamin D Receptor and Its Influence on Multiple Sclerosis Risk and Severity: From Gene Polymorphisms to Protein Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Ethics Statement
2.2. Gene Polymorphism Analyses
2.3. Peripheral Blood Mononuclear Cells Isolation from Whole Blood
2.4. Cell Fractionation
2.5. Protein Expression Analysis
2.6. Evaluation of Vitamin D Plasma Levels
2.7. Statistical Analysis
3. Results
3.1. VDR rs731236 (TaqI T/C) and VDR rs433408 (HpyCH4V G/A) Polymorphisms
3.2. Vitamin D Receptor Protein Expression
3.2.1. Total VDR Protein Expression
3.2.2. Cytoplasmic and Nuclear VDR Expression
3.3. Vitamin D Levels
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tarlinton, R.E.; Khaibullin, T.; Granatov, E.; Martynova, E.; Rizvanov, A.; Khaiboullina, S. The Interaction between Viral and Environmental Risk Factors in the Pathogenesis of Multiple Sclerosis. Int. J. Mol. Sci. 2019, 20, 303. [Google Scholar] [CrossRef]
- Kobelt, G.; Thompson, A.; Berg, J.; Gannedahl, M.; Eriksson, J.; MSCOI Study Group; European Multiple Sclerosis Platform. New insights into the burden and costs of multiple sclerosis in Europe. Mult. Scler. 2017, 23, 1123–1136. [Google Scholar] [CrossRef] [PubMed]
- Wallin, M.T.; Culpepper, W.J.; Nichols, E.; Bhutta, Z.A.; Gebrehiwot, T.T.; Hay, S.I.; Khalil, I.A.; Krohn, K.J.; Liang, X.; Naghavi, M.; et al. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 269–285. [Google Scholar] [CrossRef]
- Battaglia, M.A.; Bezzini, D. Estimated prevalence of multiple sclerosis in Italy in 2015. Neurol. Sci. 2016, 38, 473–479. [Google Scholar] [CrossRef]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Sawcer, S.; Franklin, R.; Ban, M. Multiple sclerosis genetics. Lancet Neurol. 2014, 13, 700–709. [Google Scholar] [CrossRef]
- Simpson, J.S.; Wang, W.; Otahal, P.; Blizzard, L.; Mei, I.A.F.V.D.; Taylor, B.V. Latitude continues to be significantly associated with the prevalence of multiple sclerosis: An updated meta-analysis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Lv, Z.; Fan, X.; Wang, L.; Han, F.; Wang, H.; Bi, S. Vitamin D status and the risk of multiple sclerosis: A systematic review and meta-analysis. Neurosci. Lett. 2014, 570, 108–113. [Google Scholar] [CrossRef]
- Cortese, M.; Riise, T.; Bjornevik, K.; Holmøy, T.; Kampman, M.T.; Magalhaes, S.; Pugliatti, M.; Wolfson, C.; Myhr, K.-M. Timing of use of cod liver oil, a vitamin D source, and multiple sclerosis risk: The EnvIMS study. Mult. Scler. J. 2015, 21, 1856–1864. [Google Scholar] [CrossRef]
- Laursen, J.H.; Søndergaard, H.B.; Sorensen, P.S.; Sellebjerg, F.; Oturai, A.B. Vitamin D supplementation reduces relapse rate in relapsing-remitting multiple sclerosis patients treated with natalizumab. Mult. Scler. Relat. Disord. 2016, 10, 169–173. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G.; Ramagopalan, S. The month of birth effect in multiple sclerosis: Systematic review, meta-analysis and effect of latitude. J. Neurol. Neurosurg. Psychiatry 2012, 84, 427–432. [Google Scholar] [CrossRef]
- Gauzzi, M.C.; Purificato, C.; Donato, K.; Jin, Y.; Wang, L.; Daniel, K.C.; Maghazachi, A.A.; Belardelli, F.; Adorini, L.; Gessani, S. Suppressive Effect of 1α,25-Dihydroxyvitamin D3on Type I IFN-Mediated Monocyte Differentiation into Dendritic Cells: Impairment of Functional Activities and Chemotaxis. J. Immunol. 2004, 174, 270–276. [Google Scholar] [CrossRef]
- Sadeghi, K.; Wessner, B.; Laggner, U.; Ploder, M.; Tamandl, D.; Friedl, J.; Zügel, U.; Steinmeyer, A.; Pollak, A.; Roth, E.; et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur. J. Immunol. 2006, 36, 361–370. [Google Scholar] [CrossRef]
- Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory Effects of 1,25-Dihydroxyvitamin D3on Human B Cell Differentiation. J. Immunol. 2007, 179, 1634–1647. [Google Scholar] [CrossRef]
- Lemire, J.M.; Archer, D.C.; Beck, L.; Spiegelberg, H.L. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: Preferential inhibition of Th1 functions. J. Nutr. 1995, 125, 1704S–1708S. [Google Scholar]
- Boonstra, A.; Barrat, F.J.; Crain, C.; Heath, V.L.; Savelkoul, H.F.J.; O’Garra, A. 1α,25-Dihydroxyvitamin D3 Has a Direct Effect on Naive CD4+ T Cells to Enhance the Development of Th2 Cells. J. Immunol. 2001, 167, 4974–4980. [Google Scholar] [CrossRef]
- Verstuyf, A.; Carmeliet, G.; Bouillon, R.; Mathieu, C. Vitamin D: A pleiotropic hormone. Kidney Int. 2010, 78, 140–145. [Google Scholar] [CrossRef]
- Smolders, J.; Peelen, E.; Thewissen, M.; Menheere, P.; Tervaert, J.W.C.; Hupperts, R.; Damoiseaux, J. The relevance of vitamin D receptor gene polymorphisms for vitamin D research in multiple sclerosis. Autoimmun. Rev. 2009, 8, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Van Etten, E.; Verlinden, L.; Giulietti, A.; Ramos-Lopez, E.; Branisteanu, D.D.; Ferreira, G.B.; Overbergh, L.; Verstuyf, A.; Bouillon, R.; Roep, B.O.; et al. The vitamin D receptor geneFokI polymorphism: Functional impact on the immune system. Eur. J. Immunol. 2007, 37, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Osera, C.; Fassina, L.; Amadio, M.; Venturini, L.; Buoso, E.; Magenes, G.; Govoni, S.; Ricevuti, G.; Pascale, A. Cytoprotective Response Induced by Electromagnetic Stimulation on SH-SY5Y Human Neuroblastoma Cell Line. Tissue Eng. Part A 2011, 17, 2573–2582. [Google Scholar] [CrossRef] [PubMed]
- Roxburgh, R.H.; Seaman, S.R.; Masterman, T.; Hensiek, A.E.; Sawcer, S.J.; Vukusic, S.; Achiti, I.; Confavreux, C.; Coustans, M.; Le Page, E.; et al. Multiple Sclerosis Severity Score: Using disability and disease duration to rate disease severity. Neurology 2005, 64, 1144–1151. [Google Scholar] [CrossRef]
- Silvagno, F.; Consiglio, M.; Foglizzo, V.; Destefanis, M.; Pescarmona, G. Mitochondrial Translocation of Vitamin D Receptor Is Mediated by the Permeability Transition Pore in Human Keratinocyte Cell Line. PLoS ONE 2013, 8, e54716. [Google Scholar] [CrossRef] [PubMed]
- Zella, L.A.; Meyer, M.B.; Nerenz, R.D.; Lee, S.M.; Martowicz, M.L.; Pike, J.W. Multifunctional Enhancers Regulate Mouse and Human Vitamin D Receptor Gene Transcription. Mol. Endocrinol. 2010, 24, 128–147. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Prüfer, K.; Racz, A.; Lin, G.C.; Barsony, J. Dimerization with Retinoid X Receptors Promotes Nuclear Localization and Subnuclear Targeting of Vitamin D Receptors. J. Biol. Chem. 2000, 275, 41114–41123. [Google Scholar] [CrossRef]
- Pike, J.W.; Meyer, M.B.; Bishop, K.A. Regulation of target gene expression by the vitamin D receptor—An update on mechanisms. Rev. Endocr. Metab. Disord. 2011, 13, 45–55. [Google Scholar] [CrossRef]
- De la Fuente, A.G.; Errea, O.; van Wijngaarden, P.; Gonzalez, G.A.; Kerninon, C.; Jarjour, A.A.; Lewis, H.J.; Jones, C.A.; Nait-Oumesmar, B.; Zhao, C.; et al. Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. J. Cell Biol. 2015, 211, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Díez, B.C.; Pérez-Ramírez, C.; Maldonado-Montoro, M.D.M.; Carrasco-Campos, M.I.; Martín, A.S.; Lancheros, L.E.P.; Martínez-Martínez, F.; Calleja-Hernández, M.; Ramírez-Tortosa, M.C.; Jiménez-Morales, A. Association between polymorphisms in the vitamin D receptor and susceptibility to multiple sclerosis. Pharm. Genom. 2020, 31, 40–47. [Google Scholar] [CrossRef]
- Moosavi, E.; Rafiei, A.; Yazdani, Y.; Eslami, M.; Saeedi, M. Association of serum levels and receptor genes BsmI, TaqI and FokI polymorphisms of vitamin D with the severity of multiple sclerosis. J. Clin. Neurosci. 2021, 84, 75–81. [Google Scholar] [CrossRef]
- Kamisli, O.; Acar, C.; Sozen, M.; Tecellioglu, M.; Yücel, F.E.; Vaizoglu, D.; Özcan, C. The association between vitamin D receptor polymorphisms and multiple sclerosis in a Turkish population. Mult. Scler. Relat. Disord. 2018, 20, 78–81. [Google Scholar] [CrossRef]
- Cox, M.B.; Ban, M.; Bowden, N.A.; Baker, A.; Scott, R.J.; Lechner-Scott, J. Potential association of vitamin D receptor polymorphism Taq1 with multiple sclerosis. Mult. Scler. J. 2011, 18, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Abdollahzadeh, R.; Fard, M.S.; Rahmani, F.; Moloudi, K.; Kalani, B.S.; Azarnezhad, A. Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis: A case-control study. J. Neurol. Sci. 2016, 367, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Steckley, J.L.; Dyment, D.A.; Sadovnick, A.D.; Risch, N.; Hayes, C.; Ebers, G.C. Genetic analysis of vitamin D related genes in Canadian multiple sclerosis patients. Neurology 2000, 54, 729–732. [Google Scholar] [CrossRef]
- Čierny, D.; Michalik, J.; Škereňová, M.; Kantorová, E.; Sivák, Š.; Javor, J.; Kurča, E.; Dobrota, D.; Lehotský, J. ApaI, BsmI and TaqIVDRgene polymorphisms in association with multiple sclerosis in Slovaks. Neurol. Res. 2016, 38, 678–684. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Zhang, L.; Chen, S.-Y.; Yang, G.-J.; Huang, X.-L.; Duan, Y.; Yang, L.-J.; Ye, D.-Q.; Wang, J. Association between VDR polymorphisms and multiple sclerosis: Systematic review and updated meta-analysis of case-control studies. Neurol. Sci. 2017, 39, 225–234. [Google Scholar] [CrossRef]
- Imani, D.; Razi, B.; Motallebnezhad, M.; Rezaei, R. Association between vitamin D receptor (VDR) polymorphisms and the risk of multiple sclerosis (MS): An updated meta-analysis. BMC Neurol. 2019, 19, 339. [Google Scholar] [CrossRef]
- Prüfer, K.; Barsony, J. Retinoid X Receptor Dominates the Nuclear Import and Export of the Unliganded Vitamin D Receptor. Mol. Endocrinol. 2002, 16, 1738–1751. [Google Scholar] [CrossRef] [PubMed]
- Nosratabadi, R.; Arababadi, M.K.; Salehabad, V.A.; Shamsizadeh, A.; Mahmoodi, M.; Sayadi, A.R.; Kennedy, H. Polymorphisms within exon 9 but not intron 8 of the vitamin D receptor are associated with the nephropathic complication of type-2 diabetes. Int. J. Immunogenet. 2010, 37, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Uitterlinden, A.G.; Fang, Y.; van Meurs, J.B.; Pols, H.A.; van Leeuwen, J.P. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef]
- Agliardi, C.; Guerini, F.R.; Saresella, M.; Caputo, D.; Leone, M.A.; Zanzottera, M.; Bolognesi, E.; Marventano, I.; Barizzone, N.; Fasano, M.E.; et al. Vitamin D receptor (VDR) gene SNPs influence VDR expression and modulate protection from multiple sclerosis in HLA-DRB1*15-positive individuals. Brain Behav. Immun. 2011, 25, 1460–1467. [Google Scholar] [CrossRef]
- Lv, Z.; Tang, B.; Sun, Q.; Yan, X.; Guo, J. Association Study between Vitamin D Receptor Gene Polymorphisms and Patients with Parkinson Disease in Chinese Han Population. Int. J. Neurosci. 2012, 123, 60–64. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chen, K.-H.; Chen, M.-L.; Lin, H.-I.; Wu, R.-M. Vitamin D receptor genetic variants and Parkinson’s disease in a Taiwanese population. Neurobiol. Aging 2014, 35, 1212.e11–1212.e13. [Google Scholar] [CrossRef]
- Ascherio, A.; Munger, K.L.; White, R.; Köchert, K.; Simon, K.C.; Polman, C.H.; Freedman, M.S.; Hartung, H.-P.; Miller, D.H.; Montalban, X.; et al. Vitamin D as an Early Predictor of Multiple Sclerosis Activity and Progression. JAMA Neurol. 2014, 71, 306–314. [Google Scholar] [CrossRef]
- Behrens, J.R.; Rasche, L.; Gieß, R.M.; Pfuhl, C.; Wakonig, K.; Freitag, E.; Deuschle, K.; Bellmann-Strobl, J.; Paul, F.; Ruprecht, K.; et al. Low 25-hydroxyvitamin D, but not the bioavailable fraction of 25-hydroxyvitamin D, is a risk factor for multiple sclerosis. Eur. J. Neurol. 2015, 23, 62–67. [Google Scholar] [CrossRef]
- Smolders, J.; Menheere, P.; Kessels, A.; Damoiseaux, J.; Hupperts, R. Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis. Mult. Scler. J. 2008, 14, 1220–1224. [Google Scholar] [CrossRef]
- Bäcker-Koduah, P.; Bellmann-Strobl, J.; Scheel, M.; Wuerfel, J.; Wernecke, K.-D.; Dörr, J.; Brandt, A.U.; Paul, F. Vitamin D and Disease Severity in Multiple Sclerosis—Baseline Data from the Randomized Controlled Trial (EVIDIMS). Front. Neurol. 2020, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Peleg, S.; Nguyen, C.V. The importance of nuclear import in protection of the vitamin D receptor from polyubiquitination and proteasome-mediated degradation. J. Cell. Biochem. 2010, 110, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Kongsbak, M.; von Essen, M.R.; Boding, L.; Levring, T.B.; Schjerling, P.; Lauritsen, J.P.H.; Woetmann, A.; Ødum, N.; Bonefeld, C.M.; Geisler, C. Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation in Human CD4+ T Cells. PLoS ONE 2014, 9, e96695. [Google Scholar] [CrossRef]
- Shirvani-Farsani, Z.; Kakhki, M.P.; Gargari, B.N.; Doosti, R.; Moghadasi, A.N.; Azimi, A.R.; Behmanesh, M. The expression of VDR mRNA but not NF-κB surprisingly decreased after vitamin D treatment in multiple sclerosis patients. Neurosci. Lett. 2017, 653, 258–263. [Google Scholar] [CrossRef]
- Lee, S.M.; Meyer, M.B.; Benkusky, N.A.; O’Brien, C.A.; Pike, J.W. The impact of VDR expression and regulation in vivo. J. Steroid Biochem. Mol. Biol. 2018, 177, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Feige, J.; Moser, T.; Bieler, L.; Schwenker, K.; Hauer, L.; Sellner, J. Vitamin D Supplementation in Multiple Sclerosis: A Critical Analysis of Potentials and Threats. Nutrients 2020, 12, 783. [Google Scholar] [CrossRef] [PubMed]
MS Patients | Healthy Controls | p-Value | |
---|---|---|---|
n = 105 | n = 282 | ||
Age | 45.0 (38.0–53.0) | 34.5 (29.0–41.0) | p < 0.0001 |
Sex (F/M ratio) | 1.69 | 1.19 | p = 0.129 |
MS duration (years) | 12.0 (8.0–19.0) | ||
EDSS | 2.0 (1.5–4.5) | ||
MSSS | 2.3 (1.0–5.0) |
Polymorphism | Primers | Size | Enzyme | Fragments |
---|---|---|---|---|
VDR rs731236 | F: 5′-GTCACTGGAGGGCTTTGG-3′ R: 5′-GCTGCACTCAGGCTGGAA-3′ | 381 bp | TaqI | 381 (T) 203 (C) 178 |
Genotype/Allele | MS Patients | Healthy Controls | Adjusted OR | p-Value |
---|---|---|---|---|
n = 105 | n = 282 | (95% CI) | ||
VDR rs731236 (TaqI T/C) | ||||
TT | 32 (30.5%) | 121 (42%) | 1 | |
TC | 53 (50.5%) | 130 (46%) | 1.75 (0.99–3.08) | 0.053 |
CC | 20 (19.0%) | 31 (11%) | 2.61 (1.20–5.64) | 0.015 |
TT | 32 (30%) | 121 (43%) | 1 | |
CC or TC | 73 (70%) | 161 (57%) | 1.93 (1.13–3.29) | 0.017 |
VDR rs433408 (HpyCH4V G/A) | ||||
GG | 50 (48%) | 158 (56%) | 1 | |
AG | 41 (39%) | 98 (35%) | 1.24 (0.72–2.12) | 0.446 |
AA | 14 (13%) | 26 (9%) | 1.82 (0.80–4.16) | 0.156 |
GG | 50 (48%) | 158 (56%) | 1 | |
AA or AG | 55 (52%) | 124 (44%) | 1.34 (0.81–2.22) | 0.247 |
β Coefficient | Standard Error | p-Value | |
---|---|---|---|
Total VDR | |||
25(OH)D3 | −9.24 | 5.31 | 0.09 |
Sex (male vs. female) | −14.20 | 144.38 | 0.92 |
Age | 2.97 | 6.98 | 0.67 |
MSSS | −3.77 | 32.95 | 0.91 |
Cytoplasmic VDR | |||
25(OH)D3 | 6.52 | 5.46 | 0.24 |
Sex (male vs. female) | −185.83 | 146.59 | 0.21 |
Age | −7.60 | 8.52 | 0.38 |
MSSS | −5.96 | 36.92 | 0.87 |
Nuclear VDR | |||
25(OH)D3 | 5.49 | 5.19 | 0.30 |
Sex (male vs. female) | 189.44 | 144.69 | 0.197 |
Age | 4.46 | 8.25 | 0.59 |
MSSS | 31.20 | 36.04 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pistono, C.; Osera, C.; Monti, M.C.; Boiocchi, C.; Mallucci, G.; Cuccia, M.; Montomoli, C.; Bergamaschi, R.; Pascale, A. Vitamin D Receptor and Its Influence on Multiple Sclerosis Risk and Severity: From Gene Polymorphisms to Protein Expression. Immuno 2022, 2, 469-481. https://doi.org/10.3390/immuno2030029
Pistono C, Osera C, Monti MC, Boiocchi C, Mallucci G, Cuccia M, Montomoli C, Bergamaschi R, Pascale A. Vitamin D Receptor and Its Influence on Multiple Sclerosis Risk and Severity: From Gene Polymorphisms to Protein Expression. Immuno. 2022; 2(3):469-481. https://doi.org/10.3390/immuno2030029
Chicago/Turabian StylePistono, Cristiana, Cecilia Osera, Maria Cristina Monti, Chiara Boiocchi, Giulia Mallucci, Mariaclara Cuccia, Cristina Montomoli, Roberto Bergamaschi, and Alessia Pascale. 2022. "Vitamin D Receptor and Its Influence on Multiple Sclerosis Risk and Severity: From Gene Polymorphisms to Protein Expression" Immuno 2, no. 3: 469-481. https://doi.org/10.3390/immuno2030029
APA StylePistono, C., Osera, C., Monti, M. C., Boiocchi, C., Mallucci, G., Cuccia, M., Montomoli, C., Bergamaschi, R., & Pascale, A. (2022). Vitamin D Receptor and Its Influence on Multiple Sclerosis Risk and Severity: From Gene Polymorphisms to Protein Expression. Immuno, 2(3), 469-481. https://doi.org/10.3390/immuno2030029