Preparation of Polycarbazole Nanofibers Using an Electric Field and the Investigation of Its Electrical Conductivity
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instrumentals
2.2. Preparation of Polycarbazole in the Absence of an Electric Field
2.3. Preparation of Polycarbazole under an Electric Field
3. Results and Discussion
3.1. Spectrometric Studies
3.2. Thermal Properties Studies
3.3. Scanning Electron Microscopy Studies
3.4. Electrical Conductivity Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar]
- Hosseini, S.H. Ammonium Persulphate Initiated Graft Copolymerization of Aniline onto Chitosan-A Comparative Kinetic Study. Int. J. Adv. Sci. Eng. 2021, 7, 1975–1982. [Google Scholar]
- Yang, C.Y.; Stoeckel, M.A.; Ruoko, T.P.; Wu, H.Y.; Liu, X.; Kolhe, N.B.; Wu, Z.; Puttisong, Y.; Musumeci, C.; Massetti, M.; et al. A high-conductivity n-type polymeric ink for printed electronics. Nat. Commun. 2021, 12, 2354. [Google Scholar] [CrossRef] [PubMed]
- Kupiec, S.A.; Venkatesan, J.; Hosseini, S.H.; Tyliszczak, B. Magnetic nanomaterials and sensors for biological detection. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2459–2473. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Reddy, V.S.; Ramakrishna, S.; Ghosh, R. Intelligent Polymers, Fibers and Applications. Polymers 2021, 13, 1427. [Google Scholar]
- Hosseini, S.H.; Paymanfar, R.; Afshari, T.; Hosseini, S.S. Preparation of MWCNT/Ba0.2Sr0.2La0.6MnO3/PANI nanocomposites and investigation of its electromagnetic properties in KU-band. Int. J. Phys. Sci. 2020, 15, 171–181. [Google Scholar]
- Dolabi, M.B.; Azimi, A.; Hosseini, S.H. Preparation of thermal infrared and microwave absorber using WO3/MnFe3O4/polyaniline nanocomposites. Mater. Res. Innov. 2020, 24, 326–334. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Tarakameh, M.; Hosseini, S.S. Preparation of thermal neutron absorber based B4C/TiO2/polyaniline nanocomposite. Int. J. Phys. Sci. 2020, 15, 49–59. [Google Scholar]
- Mahat, M.M.; Sabere, A.S.M.; Azizi, J.; Nor Amdan, N.A. Potential applications of conducting polymers to reduce secondary bacterial infections among COVID-19 patients: A review. Emergent Mater. 2021, 4, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, J.; Moyi Das, T.; Borah, R. Electrochemical performance study of polyaniline and polypyrrole based flexible electrodes. Int. J. Polym. Ana. Charact. 2021, 26, 354–363. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Azimi, A.; Hosseini, S.S. Preparation of Microwave Multi-Adsorbent Nanocomposites Based on Copper, Iron Carbonyl, Carbon Nanofiber, Graphite Nanoflake and Polypyrrole. J. Adv. Nanotechnol. 2020, 1, 42–55. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Azimi, A.; Dolabi, M.B. Study of UV-Visible and near infrared absorption CsXWO3/polypyrrole nanocomposite. Mater. Res. Innov. 2020, 24, 335–340. [Google Scholar] [CrossRef]
- Bekkar, F.; Bettahar, F.; Moreno, I.; Meghabar, R.; Ruiz-Rubio, L. Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years. Polymers 2020, 12, 2227. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.H.; Gohari, S.J. Electrical Field Influence on Molecular Mass and Electrical Conductivity of Polyaniline. Polym. Sci. Ser. B 2013, 55, 467–471. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Asadi, G.; Gohari, S.J. Electrical characterization of conducting poly(2-ethanolaniline) under electric field. Int. J. Phys. Sci. 2013, 8, 1218–1227. [Google Scholar]
- Hosseini, S.H.; Gohari, S.J. A novel preparation of polyaniline in presence electric and magnetic fields Adv. Mater. Res. 2013, 2, 209–219. [Google Scholar]
Absence of Electric Field | Under E = 12 KV/m | ||||
---|---|---|---|---|---|
Initiators | Weight of Produced Polymer (g) | Electrical Conductivity (δ × 10−6 S/cm) | Weight of Produced Polymer (g) | Electrical Conductivity (δE × 10−4 S/cm) | r = δE/δ |
CAN | 0.079 | 5.5 | 0.041 | 2.8 | 50.9 |
KMnO4 | 0.063 | 2.3 × 10−7 | 0.028 | 5.2 × 10−6 | 22.6 |
FeCl3(dry) | 0.093 | 7 | 0.045 | 8.9 | 127.1 |
Fe(ClO4)3 | 0.021 | 7.8 | 0.084 | 3.1 | 39.7 |
Sample | Molar Ratio of Initiator to Monomer | Color Change Time (min) | Weight of Produced Polymer (g) | Electrical Conductivity (δ × 10−6 S/cm) |
---|---|---|---|---|
1 | 1/1 | 5 | 0.004 | 2.3 |
3 | 1/3 | 5 | 0.039 | 6.6 |
4 | 1/5 | 5 | 0.093 | 6.9 |
5 | 1/7 | 5 | 0.071 | 7.1 |
Absence of Electric Field | Under E = 12 KV/m | ||||
---|---|---|---|---|---|
Solvents | Weight of Produced Polymer (g) | Electrical Conductivity (δ × 10−6 S/cm) | Weight of Produced Polymer (g) | Electrical Conductivity (S/cm) | r = δE/δ |
Acetone | 0.093 | 6.9 | 0.045 | 8.9 × 10−4 | 128.9 |
THF | 0.063 | 6.1 | 0.072 | 6.5 × 10−4 | 106.5 |
DMSO | 0.018 | 1.5 | 0.093 | 5.6 × 10−5 | 37.3 |
DMF | 0.048 | 2.4 | 0.08 | 6.4 × 10−5 | 26.6 |
Absence of Electric Field | Under E = 12 KV/m | ||||
---|---|---|---|---|---|
Time of Polymerization (h) | Weight of Produced Polymer (g) | Electrical Conductivity (δ × 10−6 S/cm) | Weight of Produced Polymer (g) | Electrical Conductivity (δE × 10−4 S/cm) | r = δE/δ |
1 | 0.022 | 1.1 | 0.023 | 4.6 × 10−5 | 42.2 |
2 | 0.028 | 3.2 | 0.038 | 2.7 | 85.1 |
3 | 0.036 | 6.9 | 0.046 | 8.9 | 128.9 |
4 | 0.039 | 7.1 | 0.045 | 3.5 | 49.2 |
5 | 0.039 | 7.3 | 0.045 | 1.2 | 16.4 |
Sample | Electric Field (KV/m) | Weight of Produced Polymer (g) | Electrical Conductivity (δE × 10−4/cm) |
---|---|---|---|
1 | 5 | 0.069 | 8.4 × 10−5 |
2 | 10 | 0.078 | 1.4 |
3 | 11 | 0.043 | 4.5 |
4 | 12 | 0.045 | 8.9 |
5 | 13 | 0.049 | 7.3 |
6 | 14 | 0.046 | 5.4 |
7 | 15 | 0.027 | 4.9 |
8 | 20 | 0.018 | 1.2 |
9 | 25 | 0.013 | 8.4 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, S.H.; Kazemi, A.A.; Hosseini, S.A. Preparation of Polycarbazole Nanofibers Using an Electric Field and the Investigation of Its Electrical Conductivity. Nanomanufacturing 2023, 3, 113-122. https://doi.org/10.3390/nanomanufacturing3010007
Hosseini SH, Kazemi AA, Hosseini SA. Preparation of Polycarbazole Nanofibers Using an Electric Field and the Investigation of Its Electrical Conductivity. Nanomanufacturing. 2023; 3(1):113-122. https://doi.org/10.3390/nanomanufacturing3010007
Chicago/Turabian StyleHosseini, Seyed Hossein, Amir Abbas Kazemi, and Seyed Arash Hosseini. 2023. "Preparation of Polycarbazole Nanofibers Using an Electric Field and the Investigation of Its Electrical Conductivity" Nanomanufacturing 3, no. 1: 113-122. https://doi.org/10.3390/nanomanufacturing3010007
APA StyleHosseini, S. H., Kazemi, A. A., & Hosseini, S. A. (2023). Preparation of Polycarbazole Nanofibers Using an Electric Field and the Investigation of Its Electrical Conductivity. Nanomanufacturing, 3(1), 113-122. https://doi.org/10.3390/nanomanufacturing3010007