New Data on the Reactions of Zirconium and Hafnium Tetrachlorides with Aliphatic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials and Methods
2.2. Synthesis
2.2.1. Reaction of ZrCl4 with Excess 2-Methylpropanoic Acid
2.2.2. Reaction of HfCl4 with Excess 2-Methylpropanoic Acid
3. Results and Discussion
3.1. Synthesis
3.2. X-ray Crystallographic Structure
3.3. IR Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comyns, A.E. Encyclopedic Dictionary of Named Processes in Chemical Technology, 4th ed.; CRC Press Inc.: Boca Raton, FL, USA, 2014; p. 14. [Google Scholar]
- Khamiyev, M.; Khanmetov, A.; Amir Resa, V.; Aliyeva, R.; Hajıyeva-Atayi, K.; Akhundova, Z.; Khamiyeva, G. Zirconium Catalyzed Ethylene Oligomerization. Appl. Organometal. Chem. 2020, 3, e5409. [Google Scholar] [CrossRef]
- Talreja, N.; Kumar, D. Fabrication of Porous Nanoceramic Materials Based on Sol-Gel Chemistry. In Smart Ceramics: Preparation, Properties, and Applications; Mishra, A.K., Ed.; Jenny Stanford Publishing: Singapore, 2018; pp. 121–142. [Google Scholar]
- Sugimoto, T. Monodispersed Particles, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 850. [Google Scholar]
- Schneider, J.J.; Hoffmann, R.C.; Issanin, A.; Dilfe, S. Zirconia and hafnia films from single source molecular precursor compounds: Synthesis, characterization and insulating properties of potential high k-dielectrics. Mat. Sci. Eng. B 2011, 176, 965–971. [Google Scholar] [CrossRef]
- Salehipour, M.; Rezaei, S.; Rezaei, M.; Yazdan, M.; Mogharabi-Manzari, M.J. Opportunities and Challenges in Biomedical Applications of Metal–Organic Frameworks. Inorg. Organomet. Polym. Mater. 2021, 31, 4443–4462. [Google Scholar] [CrossRef]
- Mortada, B.; Matar, T.A.; Sakaya, A.; Atallah, H.; Ali, Z.K.; Karam, P.; Hmadeh, M. Postmetalated Zirconium Metal Organic Frameworks as a Highly Potent Bactericide. Inorg. Chem. 2017, 56, 4739–4744. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, M. Metal-organic Framework (MOF) Based Materials for Electrochemical Hydrogen Production: A Mini Review. J. Electrochem. Sci. 2021, 16, 210530. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, C.; Jiang, T.; Li, X. Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production. Front. Energy 2021, 15, 656–666. [Google Scholar] [CrossRef]
- Yuan, S.; Qin, S.J.; Lollar, C.T.; Zhou, H.-C. Stable Metal−Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Cent. Sci. 2018, 4, 440–450. [Google Scholar] [CrossRef]
- Chen, Z.; Hanna, S.L.; Redfern, L.R.; Alezi, D.; Islamoglu, T.; Farha, O.K. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev. 2019, 386, 32–49. [Google Scholar] [CrossRef]
- Mehrotra, R.C.; Bohra, R. Metal Carboxylates; Academic Press: London, UK, 1983; pp. 32–240. [Google Scholar]
- Ludvig, J.; Schwarz, D.A. Study of the Reactions of Zirconium(IV) Chloride with Some Aliphatic Acids. Inorg. Chem. 1970, 9, 607–611. [Google Scholar] [CrossRef]
- Piszczek, P.; Radtke, A.; Grodzicki, A.; Wojtczak, A.; Chojnacki, J. The new type of [Zr6(μ3-O)4(μ3-OH)4] cluster core: Crystal structure and spectral characterization of [Zr6O4(OH)4(OOCR)12] (R = But, C(CH3)2Et). Polyhedron 2007, 26, 679–685. [Google Scholar] [CrossRef]
- Kickelbick, G.; Schubert, U. Oxozirconium Methacrylate Clusters: Zr6(OH)4O4(OMc)12 and Zr4O2(OMc)12 (OMc = Methacrylate). Chem. Ber./Recueil. 1997, 130, 473–477. [Google Scholar] [CrossRef]
- Puchberger, M.; Kogler, F.R.; Jupa, M.; Gros, S.; Fric, H.; Kickelbick, G.; Schubert, U. Can the Clusters Zr6O4(OH)4(OOCR)12 and [Zr6O4(OH)4(OOCR)12]2 be Converted into Each Other? Eur. J. Inorg. Chem. 2006, 2006, 3283–3293. [Google Scholar] [CrossRef]
- Kogler, F.R.; Jupa, M.; Puchberger, M.; Schubert, U. Control of the ratio of functional and non-functional ligands in clusters of the type Zr6O4(OH)4(carboxylate)12 for their use as building blocks for inorganic–organic hybrid polymers. J. Mater. Chem. 2004, 14, 3133–3138. [Google Scholar] [CrossRef]
- Gross, S.; Kickelbick, G.; Puchberger, M.; Schubert, U. Mono-, Di-, and Trimetallic Methacrylate-substituted Metal Oxide Clusters Derived from Hafnium Butoxide. Monatshefte Für Chem./Chem. Mon. 2003, 134, 1053–1063. [Google Scholar] [CrossRef]
- Khodakovskaya, V.A.; Enikolopyan, N.S.; D’yachkovskii, F.S.; Matkovskii, P.E.; Brikenshtein, K.-M.A.; Gerasina, M.P.; Belova, V.N.; Chernykh, S.P.; Golubev, V.K.; Zavorotov, V.I.; et al. USSR Inventor’s Certificate No. 1042701, Buyll. Izobret. 1983, 35. Available online: https://patents.su/6-1042701-katalizator-dlya-oligomerizacii-ehtilena-v-vysshie-alfa-olefiny.html (accessed on 24 April 2024).
- Dyachkovsky, F.; Pyatiletov, V.; Khodakovskaya, V.; Arutyunov, L.; Chernykh, S.; Zavorotov, V.; Enikolopyan, N.; Andreev, V.; Brikenstein, K.; Golubev, V.; et al. Patent WO1980000224 A1, Izobr. SSSR i za Rubezhom, 1981, 6, 16; PCT Int. Appl. 80/00224. Chem. Abstr. 1980, 93, 72615Х. [Google Scholar]
- Aliev, V.; Abu-Raquabah, A.; Zahoor, M. Process for the Preparation of Linear Alpha-Olefins and Catalyst Used Therein. U.S. Patent 8,653,316 B2, 18 February 2014. [Google Scholar]
- Aliev, V.; Musa, F.; Al-Hazmi, M. Catalyst Composition and Process for Preparing Linear Alpha-Olefins. U.S. Patent 9,050,587 B2, 9 June 2015. [Google Scholar]
- Belov, G.P.; Matkovsky, P.E. Processes for the production of higher linear α-olefins. Petroleum Chem. 2010, 50, 283–289. [Google Scholar] [CrossRef]
- Makhaev, V.D.; Petrova, L.A. Reactions of Zirconium Tetrachloride with Pivalic Acid in Organic Solvents under Heating. Russ. J. Inorg. Chem. 2011, 56, 304–307. [Google Scholar] [CrossRef]
- Makhaev, V.D.; Petrova, L.A. Reaction of Zirconium Tetrachloride with 2,2-Dimethylbutanoic Acid. Rus. J. Gen. Chem. 2018, 88, 1430–1435. [Google Scholar] [CrossRef]
- Agilent Technologies. CrysAlisPro, Version 1.171.36.20; AgilentTechnologies: Yarnton, Oxfordshire, UK, 2012. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Prozorovskaya, Z.N.; Komissarova, L.N.; Spitsyn, V.I. Zirconium and Hafnium Butyrates. Zh. Neorg. Khim. 1968, 13, 706–711. [Google Scholar]
- Paul, R.C.; Baidya, O.B.; Kumar, R.C.; Kapoor, R. Zirconium(IV) Carboxylates. Austral. J. Chem. 1976, 29, 1605–1607. [Google Scholar] [CrossRef]
- Fritz, P.; Bolt, H.; Scherschlicht, K.-H.; Mosa, F.; AIi, T.K.; Al-Otaibi, S. Process for the Synthesis of Zirconium Carboxylates. U.S. Patent 2008/0119665 A1, 22 May 2008. [Google Scholar]
- Shcheglova, N.M.; Popov, V.V.; Lenev, D.A.; Krupko, I.V. Solution of Zirconium (IV) Carboxylate in an Aromatic Solvent and a Method for Its Production. Patent RU 2802025, 22 August 2023. [Google Scholar]
- Makhaev, V.D.; Matkovskii, P.E.; Petrova, L.A.; Sasnovskaya, V.D. Solid-phase mechanochemical synthesis of zirconium tetracarboxylates. Russ Chem Bull. 2010, 59, 1735–1739. [Google Scholar] [CrossRef]
- Strieter, F.J.; Templeton, D.H. The Crystal Structure of Propionic Acid. Acta Cryst. 1962, 15, 1233–1239. [Google Scholar] [CrossRef]
- Strieter, F.J.; Templeton, D.H. Crystal Structure of Butyric Acid. Acta Cryst. 1962, 15, 1240–1244. [Google Scholar] [CrossRef]
- Scheuerman, R.F.; Sass, R.L. The Crystal Structure of Valeric Acid. Acta Cryst. 1962, 15, 1244–1247. [Google Scholar] [CrossRef]
- Meindl, K.; Henn, J. Residual Density Analysis. In Electron Density and Chemical Bonding II. Structure and Bonding; Stalke, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 143–192. [Google Scholar] [CrossRef]
- Bellamy, L.J. The Infra-Red Spectra of Complex Molecules, 3rd ed.; Chapman & Hall: London, UK, 1975; p. 433. [Google Scholar]
- Deacon, G.B.; Phillips, R.J. Relationships Between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
Complex | IV |
---|---|
Identification code | BM1155s-100 |
Empirical formula | C60H114Hf6O39 |
Formula weight | 2530.45 |
Temperature, K | 100(1) |
Wavelength, Å | 0.7107 |
Crystal system, space group | Triclinic, P-1 |
a/Å | 12.5669(4) |
b/Å | 15.5598(5) |
c/Å | 22.2169(4) |
α/deg. | 92.465(2) |
β/deg. | 96.440(2) |
γ/deg. | 102.188(2) |
Volume, Å3 | 4209.6(2) |
Z, Calculated density, Mg/m3 | 2, 1.996 |
Absorption coefficient | 7.451 mm−1 |
F(000) | 2436 |
Crystal size, mm | 0.20 × 0.15 × 0.10 |
Theta range for data collection, deg. | 2.837 to 26.569 |
Limiting indices | −15 ≤ h < 15, −19 ≤ k ≤ 18, −27 ≤ l ≤ 27 |
Reflections collected/unique | 38546/17520 [R(int) = 0.0506] |
Completeness to theta = 25.242 | 99.7% |
Absorption correction | Semi-empirical from equivalents |
Data/restraints/parameters | 17520/58/946 |
Goodness-of-fit on F2 | 1.033 |
Final R indices [I > 2σ(I)] | R1 = 0.0501, wR2 = 0.1157 |
R indices (all data) | R1 = 0.0770, wR2 = 0.1302 |
Extinction coefficient | n/a |
Largest diff. peak and hole, e.Å−3 | 3.317 and −3.214 |
D–H | d(D–H, Å) | d(H…A, Å) | <DHA | d(D…A, Å) | A |
---|---|---|---|---|---|
O5–H5 | 0.854 | 1.982 | 169.91 | 2.827 | O27 |
O7–H7 | 0.893 | 1.871 | 176.30 | 2.762 | O30 |
O38–H38C | 0.959 | 1.776 | 166.12 | 2.717 | O42 |
O38–H38D | 0.958 | 1.840 | 158.24 | 2.753 | O42 * |
O28–H28 | 0.840 | 1.806 | 171.78 | 2.640 | O16 |
O31–H31 | 0.840 | 1.847 | 170.07 | 2.679 | O14 |
O32–H32 | 0.840 | 2.023 | 150.72 | 2.786 | O1 |
O33–H33 | 0.840 | 1.884 | 172.26 | 2.719 | O15 |
Assignment | 2-Methylpropanoic Acid | I | II | III | IV |
---|---|---|---|---|---|
ν(OH), µ3-OH groups | 3676 w, sharp | 3657 w, sharp | |||
ν(OH) acid | 3500–3200 wide | ||||
ν(CH3) | 2979 s, 2968 m, 2875 m | 2966, 2923, 2875 | 2966, 2923, 2875 | 2966, 2923, 2875 | 2966, 2923, 2875 |
ν(COO) acid | 1709 vs | 1717 m | 1700 m | ||
νas(COO) | 1572 s, 1556 vs | 1589 s, wide | 1612 m, 1542 s, 1524 s | 1593 s, 1561 s | 1604 m, 1547 s, 1530 s |
δas(CH3) | 1478 s | 1474 s | 1471 s | 1473 s | 1473 s |
νs(COO) | 1418 m | 1433 s | 1431 s | 1430 s | 1434 s |
δs(CH3) | 1387 s, 1368 s, 1334 s | 1377, 1363 m | 1362 m | 1376 m | 1378 w, 1363 w |
ν(C–(CH3)2), δ(C–C) | 1290 s | 1297 s, 1214 m | 1296 m, 1213 m | 1303 w, 1213 m, 1167 w | 1296 m, 1215 w, 1187 w |
ν(C–O) acid | 1241 vs, 1169 m | ||||
ρ(CH3) | 1100 m, 1080 m | 1097 m, 965 w | 1097 m, 964 w | 1097 m, 986 vw | 1096 m |
ν(C–C) | 937 s | 934 w | 932 vw | 931 vw | 935 vw |
811 m | 861 m, 771 m | 842 w, 766 w | 865 w, 841 w, 764 w | 863 w, 771 w | |
δ(OCO) | 630 m | 650 w, wide | 657 w, wide | 657 w, wide | |
π(OCO) out-of-plane | 605 m, 560 w | 596 w | 570 vw | 568 w, wide | |
544 w, 524 w | 541 m | 547 vw | 521 m | ||
π(OCO) in-plane | 464 s, wide 435 s, wide | 488 m, wide, 421 s, wide | 492 vw, 452 vw | ||
379 w | 351 m, wide | 372 w |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhaev, V.D.; Petrova, L.A.; Shilov, G.V.; Aldoshin, S.M. New Data on the Reactions of Zirconium and Hafnium Tetrachlorides with Aliphatic Acids. Compounds 2024, 4, 338-350. https://doi.org/10.3390/compounds4020018
Makhaev VD, Petrova LA, Shilov GV, Aldoshin SM. New Data on the Reactions of Zirconium and Hafnium Tetrachlorides with Aliphatic Acids. Compounds. 2024; 4(2):338-350. https://doi.org/10.3390/compounds4020018
Chicago/Turabian StyleMakhaev, Victor D., Larisa A. Petrova, Gennadii V. Shilov, and Sergey M. Aldoshin. 2024. "New Data on the Reactions of Zirconium and Hafnium Tetrachlorides with Aliphatic Acids" Compounds 4, no. 2: 338-350. https://doi.org/10.3390/compounds4020018
APA StyleMakhaev, V. D., Petrova, L. A., Shilov, G. V., & Aldoshin, S. M. (2024). New Data on the Reactions of Zirconium and Hafnium Tetrachlorides with Aliphatic Acids. Compounds, 4(2), 338-350. https://doi.org/10.3390/compounds4020018