Anti-Inflammatory and Antithrombotic Potential of Metal-Based Complexes and Porphyrins
Abstract
:1. Introduction
2. Metal-Based Complexes with Anti-Inflammatory and Antithrombotic Properties
2.1. Metal-Based Complexes with Anti-Inflammatory and Antithrombotic Potency, Mainly through Their Anti-PAF Effects
2.2. Other Metal-Based Complexes with a General Anti-Inflammatory and Antithrombotic Potency through Other Pathways, Assessed In Vivo in Animal Models
2.3. Metal-Based Complexes Containing Well-Established Natural Anti-Inflammatory Bioactives
3. Porphyrin-Based Compounds with Anti-Inflammatory and Antithrombotic Bioactivities and Associated Health Promoting Effects
3.1. Free-Base Poprhyrins
3.1.1. Tetraphenyl Based Porphyrins
3.1.2. Verteporfin
3.2. Metal-Based Porphyrin Complexes
3.2.1. Cobalt Protoporphyrin IX
3.2.2. Porphyrin-Related Nanoparticles and Heme–Albumin Complexes
3.2.3. Manganese–Porphyrin Derivatives
3.2.4. Copper Tetraphenyl Porphyrin/Titanium Dioxide Nanoparticles
3.2.5. Cobalt Haematoporphyrin
4. Conclusions, Limitations, and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.L.R.; Wilairatana, P.; Silva, L.R.; Moreira, P.S.; Vilar Barbosa, N.M.M.; da Silva, P.R.; Coutinho, H.D.M.; de Menezes, I.R.A.; Felipe, C.F.B. Biochemical Aspects of the Inflammatory Process: A Narrative Review. Biomed. Pharmacother. Biomedecine Pharmacother. 2023, 168, 115764. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.L.; Basit, H.; Burns, B. Pathology, Inflammation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Inflammation, Not Cholesterol, Is a Cause of Chronic Disease. Nutrients 2018, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Iatrou, C.; Frangia, C.; Demopoulos, C. The Implication of Platelet Activating Factor in Cancer Growth and Metastasis: Potent Beneficial Role of PAF-Inhibitors and Antioxidants. Infect. Disord. Drug Targets 2009, 9, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- McFadyen, J.D.; Schaff, M.; Peter, K. Current and Future Antiplatelet Therapies: Emphasis on Preserving Haemostasis. Nat. Rev. Cardiol. 2018, 15, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Platelet Activation and Prothrombotic Mediators at the Nexus of Inflammation and Atherosclerosis: Potential Role of Antiplatelet Agents. Blood Rev. 2021, 45, 100694. [Google Scholar] [CrossRef] [PubMed]
- Hyland, I.K.; O’Toole, R.F.; Smith, J.A.; Bissember, A.C. Progress in the Development of Platelet-Activating Factor Receptor (PAFr) Antagonists and Applications in the Treatment of Inflammatory Diseases. ChemMedChem 2018, 13, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; DuBourdieu, D.; Srivastava, A.; Kumar, P.; Lall, R. Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin. Int. J. Mol. Sci. 2021, 22, 7094. [Google Scholar] [CrossRef]
- Liao, X.; Ji, P.; Chi, K.; Chen, X.; Zhou, Y.; Chen, S.; Cheng, Y.; Flaumenhaft, R.; Yuan, C.; Huang, M. Enhanced Inhibition of Protein Disulfide Isomerase and Anti-Thrombotic Activity of a Rutin Derivative: Rutin: Zn Complex. RSC Adv. 2023, 13, 11464–11471. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; El-Khatib, R.M.; Abdel-Fatah, S.M.; Moustafa, H.; Alsalme, A.M.; Nafady, A. Novel Cr (III), Fe (III) and Ru (III) Vanillin Based Metallo-Pharmaceuticals for Cancer and Inflammation Treatment: Experimental and Theoretical Studies. Appl. Organomet. Chem. 2019, 33, e5177. [Google Scholar] [CrossRef]
- Papakonstantinou, V.D.; Lagopati, N.; Tsilibary, E.C.; Demopoulos, C.A.; Philippopoulos, A.I. A Review on Platelet Activating Factor Inhibitors: Could a New Class of Potent Metal-Based Anti-Inflammatory Drugs Induce Anticancer Properties? Bioinorg. Chem. Appl. 2017, 2017, 6947034. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, V.; Nikoloudakis, E.; Ladomenou, K.; Charalambidis, G.; Coutsolelos, A.G. Porphyrins—Valuable Pigments of Life. Front. Chem. Biol. 2024, 2, 1346465. [Google Scholar] [CrossRef]
- Margariti, A.; Papakonstantinou, V.D.; Stamatakis, G.M.; Demopoulos, C.A.; Machalia, C.; Emmanouilidou, E.; Schnakenburg, G.; Nika, M.-C.; Thomaidis, N.S.; Philippopoulos, A.I. First-Row Transition Metal Complexes Incorporating the 2-(2′-pyridyl)quinoxaline Ligand (pqx), as Potent Inflammatory Mediators: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin. Molecules 2023, 28, 6899. [Google Scholar] [CrossRef] [PubMed]
- Kalampalidis, A.; Peppas, A.; Schnakenburg, G.; Papakyriakou, A.; Tsoupras, A.; Zabetakis, I.; Philippopoulos, A.I. Antithrombotic and Antiplatelet Activity of an Organometallic Rhodium(I) Complex Incorporating a Substituted Thieno-[2,3-d]-pyrimidine Ligand: Synthesis, Structural Characterization, and Molecular Docking Calculations. Appl. Organomet. Chem. 2021, 35, e6210. [Google Scholar] [CrossRef]
- Kalampalidis, A.; Damati, A.; Matthopoulos, D.; Tsoupras, A.B.; Demopoulos, C.A.; Schnakenburg, G.; Philippopoulos, A.I. Tin(II) and Tin(IV) Complexes Incorporating the Oxygen Tripodal Ligands [(η5-C5R5)Co{P(OEt)2O}3]−, (R = H, Me; Et = -C2H5) as Potent Inflammatory Mediator Inhibitors: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin. Molecules 2023, 28, 1859. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.B.; Papakyriakou, A.; Demopoulos, C.A.; Philippopoulos, A.I. Synthesis, Biochemical Evaluation and Molecular Modeling Studies of Novel Rhodium Complexes with Nanomolar Activity against Platelet Activating Factor. J. Inorg. Biochem. 2013, 120, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Lett, S.; Tsoupras, A.; Papakonstantinou, V.; Stamatakis, G.; Demopoulos, C.; Falaras, P.; Philippopoulos, A. Biochemical evaluation of ruthenium-based complexes towards PAF (Platelet Activating Factor) and thrombin. Potent anti-inflammatory agents. Sci. Lett. J. 2015, 4, 208. [Google Scholar]
- Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules 2021, 26, 4886. [Google Scholar] [CrossRef]
- Bryden, F.; Boyle, R.W. Chapter Four–Metalloporphyrins for Medical Imaging Applications. In Advances in Inorganic Chemistry; van Eldik, R., Hubbard, C.D., Eds.; Insights from Imaging in Bioinorganic Chemistry; Academic Press: Cambridge, MA, USA, 2016; Volume 68, pp. 141–221. [Google Scholar]
- Hakli, Ö.; Yarali, S.; Öner Usta, E.; Ayaz, F. Photodynamic Anti-Inflammatory Activity of Meso-Aryl Substituted Porphyrin Derivative on Mammalian Macrophages. Photodiagnosis Photodyn. Ther. 2024, 45, 103922. [Google Scholar] [CrossRef]
- Tahoun, M.; Gee, C.T.; McCoy, V.E.; Sander, P.M.; Müller, C.E. Chemistry of Porphyrins in Fossil Plants and Animals. RSC Adv. 2021, 11, 7552–7563. [Google Scholar] [CrossRef] [PubMed]
- Hiroto, S.; Miyake, Y.; Shinokubo, H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem. Rev. 2017, 117, 2910–3043. [Google Scholar] [CrossRef]
- Panda, M.K.; Ladomenou, K.; Coutsolelos, A.G. Porphyrins in Bio-Inspired Transformations: Light-Harvesting to Solar Cell. Coord. Chem. Rev. 2012, 256, 2601–2627. [Google Scholar] [CrossRef]
- Ladomenou, K.; Natali, M.; Iengo, E.; Charalampidis, G.; Scandola, F.; Coutsolelos, A.G. Photochemical Hydrogen Generation with Porphyrin-Based Systems. Coord. Chem. Rev. 2015, 304–305, 38–54. [Google Scholar] [CrossRef]
- Nikoloudakis, E.; López-Duarte, I.; Charalambidis, G.; Ladomenou, K.; Ince, M.; Coutsolelos, A.G. Porphyrins and Phthalocyanines as Biomimetic Tools for Photocatalytic H2 Production and CO2 Reduction. Chem. Soc. Rev. 2022, 51, 6965–7045. [Google Scholar] [CrossRef]
- Gkika, D.A.; Ladomenou, K.; Bououdina, M.; Mitropoulos, A.C.; Kyzas, G.Z. Adsorption and Photocatalytic Applications of Porphyrin-Based Materials for Environmental Separation Processes: A Review. Sci. Total Environ. 2024, 908, 168293. [Google Scholar] [CrossRef]
- Fletcher, J.R.; DiSimone, A.G.; Earnest, M.A. Platelet Activating Factor Receptor Antagonist Improves Survival and Attenuates Eicosanoid Release in Severe Endotoxemia. Ann. Surg. 1990, 211, 312–316. [Google Scholar]
- Zhang, J.; Yuan, X.; Li, H.; Yu, L.; Zhang, Y.; Pang, K.; Sun, C.; Liu, Z.; Li, J.; Ma, L.; et al. Novel Porphyrin Derivative Containing Cations as New Photodynamic Antimicrobial Agent with High Efficiency. RSC Adv. 2024, 14, 3122–3134. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, I.; Merlos, M.; García-Rafanell, J. Rupatadine: A New Selective Histamine H1 Receptor and Platelet-Activating Factor (PAF) Antagonist. A Review of Pharmacological Profile and Clinical Management of Allergic Rhinitis. Drugs Today 2003, 39, 451–468. [Google Scholar] [CrossRef]
- Margariti, A.; Papakonstantinou, V.D.; Stamatakis, G.M.; Demopoulos, C.A.; Schnakenburg, G.; Andreopoulou, A.K.; Giannopoulos, P.; Kallitsis, J.K.; Philippopoulos, A.I. Substituted Pyridine-Quinoline Ligands as Building Blocks for Neutral Rhodium(III) Complexes. Synthesis, Structural Characterization Studies and Anti-Platelet Activity towards the Platelet-Activating Factor (PAF). Polyhedron 2020, 178, 114336. [Google Scholar] [CrossRef]
- Ravishankar, D.; Salamah, M.; Attina, A.; Pothi, R.; Vallance, T.M.; Javed, M.; Williams, H.F.; Alzahrani, E.M.S.; Kabova, E.; Vaiyapuri, R.; et al. Ruthenium-Conjugated Chrysin Analogues Modulate Platelet Activity, Thrombus Formation and Haemostasis with Enhanced Efficacy. Sci. Rep. 2017, 7, 5738. [Google Scholar] [CrossRef] [PubMed]
- Peppas, A.; Kalabalidis, A.; Papakonstantinou, V.; Demopoulos, C.; Schnakenburg, G.; Philippopoulos, A. Rhodium-Based Inhibitors of the Platelet Activating Factor (PAF): A New Class of Potent Anti-Inflammatory Drugs. In Chemical Elements (Fluorine, Rhodium and Rubidium): Properties, Synthesis and Applications; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2014; pp. 127–169. [Google Scholar]
- Merlos, M.; Giral, M.; Balsa, D.; Ferrando, R.; Queralt, M.; Puigdemont, A.; García-Rafanell, J.; Forn, J. Rupatadine, a New Potent, Orally Active Dual Antagonist of Histamine and Platelet-Activating Factor (PAF). J. Pharmacol. Exp. Ther. 1997, 280, 114–121. [Google Scholar] [PubMed]
- Kaplanis, M.; Stamatakis, G.; Papakonstantinou, V.D.; Paravatou-Petsotas, M.; Demopoulos, C.A.; Mitsopoulou, C.A. Re(I) tricarbonyl complex of 1,10-phenanthroline-5,6-dione: DNA binding, cytotoxicity, Anti-Inflammatory and Anti-Coagulant Effects towards Platelet Activating Factor. J. Inorg. Biochem. 2014, 135, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sioriki, E.; Lordan, R.; Nahra, F.; van Hecke, K.; Zabetakis, I.; Nolan, S.P. In vitro Anti-atherogenic Properties of N-Heterocyclic Carbene Aurate(I) Compounds. ChemMedChem 2018, 13, 2484–2487. [Google Scholar] [CrossRef] [PubMed]
- Siabali, S.A. Ru(II) Complexes and Their Biological Activity towards Platelet Activating Factor. Master’s Thesis, National and Kapodistrian University Athens, Athens, Greece, 2015. [Google Scholar]
- Prokopi, P.M. Complexes of Ir(I) and Ir(III) and Evaluation of Their Biological Activity against Platelet Activating Factor. Master’s Thesis, National and Kapodistrian University Athens, Athens, Greece, 2015. [Google Scholar]
- Cao, C.; Tan, Q.; Xu, C.; He, L.; Yang, L.; Zhou, Y.; Zhou, Y.; Qiao, A.; Lu, M.; Yi, C.; et al. Structural Basis for Signal Recognition and Transduction by Platelet-Activating-Factor Receptor. Nat. Struct. Mol. Biol. 2018, 25, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Kanso, F.; Khalil, A.; Noureddine, H.; El-Makhour, Y. Therapeutic Perspective of Thiosemicarbazones Derivatives in Inflammatory Pathologies: A Summary of in vitro/in vivo studies. Int. Immunopharmacol. 2021, 96, 107778. [Google Scholar] [CrossRef]
- El-Asmy, A.A.; Sherif, Y.E.; Gabr, S.A.; Al-Hazmi, G.A. Synthesis and Antiinflamation Activity of Bis(Diacetylmonoxime) Thiocarbohydrazone and Its Cu(II) Complex. Biochem. Indian J. 2007, 1, 53–62. [Google Scholar]
- Carvalho, I.O.; Queiroz, C.V.G.; Marques, G.F.O.; Craveiro, R.M.C.B.; Xavier Júnior, F.A.F.; Gouveia Júnior, F.S.; Lopes, L.G. de F.; Chaves, E.M.C.; Monteiro, H.S.A.; Assreuy, A.M.S.; et al. The Nitric Oxide Pathway Is Involved in the Anti-Inflammatory Effect of the Rutheniumcomplex [Ru(bpy)2(2-MIM)(NO)](PF6)3. Eur. J. Pharmacol. 2022, 921, 174869. [Google Scholar] [CrossRef] [PubMed]
- Khamrang, T.; Hung, K.-C.; Hsia, C.-H.; Hsieh, C.-Y.; Velusamy, M.; Jayakumar, T.; Sheu, J.-R. Antiplatelet Activity of a Newly Synthesized Novel Ruthenium (II): A Potential Role for Akt/JNK Signaling. Int. J. Mol. Sci. 2017, 18, 916. [Google Scholar] [CrossRef]
- Sasahara, G.L.; Júnior, F.S.G.; de Oliveira Rodrigues, R.; Zampieri, D.S.; da Cruz Fonseca, S.G.; Gonçalves, R.D.C.R.; Athaydes, B.R.; Kitagawa, R.R.; Santos, F.A.; Sousa, E.H.S.; et al. Nitro-Imidazole-Based Ruthenium Complexes with Antioxidant and Anti-Inflammatory Activities. J. Inorg. Biochem. 2020, 206, 111048. [Google Scholar] [CrossRef]
- Chen, H.; Sun, T.; Yan, Y.; Ji, X.; Sun, Y.; Zhao, X.; Qi, J.; Cui, W.; Deng, L.; Zhang, H. Cartilage Matrix-Inspired Biomimetic Superlubricated Nanospheres for Treatment of Osteoarthritis. Biomaterials 2020, 242, 119931. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.-S.; Gao, G.-B.; Ma, Y.-M.; Luo, J.-X.; Zhang, G.-W.; Yang, H.; Li, N.; He, Q.-Y.; Lin, H.-S. Highly Bioactive Iridium Metal-Complex Alleviates Spinal Cord Injury via ROS Scavenging and Inflammation Reduction. Biomaterials 2022, 284, 121481. [Google Scholar] [CrossRef] [PubMed]
- Bielig, H.; Velder, J.; Saiai, A.; Menning, M.; Meemboor, S.; Kalka-Moll, W.; Krönke, M.; Schmalz, H.; Kufer, T.A. Anti-inflammatory Arene—Chromium Complexes Acting as Specific Inhibitors of NOD2 Signalling. ChemMedChem 2010, 5, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Negroni, A.; Pierdomenico, M.; Cucchiara, S.; Stronati, L. NOD2 and Inflammation: Current Insights. J. Inflamm. Res. 2018, 11, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhao, L.; Kim, K.; Lee, D.S.; Hwang, D.H. Inhibition of Nod2 Signaling and Target Gene Expression by Curcumin. Mol. Pharmacol. 2008, 74, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Luo, X.; Xu, S.; Xu, D.; Zheng, Y.; Xu, S.; Lv, J. Gastroprotective Effects of a New Zinc(II)–Curcumin Complex against Pylorus-Ligature-Induced Gastric Ulcer in Rats. Chem. Biol. Interact. 2009, 181, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Xu, D.; Xu, S.; Zheng, Y.; Xu, S. Novel role of Zn(II)–Curcumin in Enhancing Cell Proliferation and Adjusting Proinflammatory Cytokine-Mediated Oxidative Damage of Ethanol-Induced Acute Gastric Ulcers. Chem. Biol. Interact. 2012, 197, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Kunwar, A.; Narang, H.; Priyadarsini, K.I.; Krishna, M.; Pandey, R.; Sainis, K.B. Delayed Activation of PKCδ and NFκB and Higher Radioprotection in Splenic Lymphocytes by Copper (II)–Curcumin (1:1) Complex as Compared to Curcumin. J. Cell. Biochem. 2007, 102, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.-S.; Sun, J.-L.; Xie, W.-H.; Shen, L.; Ji, H.-F. Neuroprotective Effects and Mechanisms of Curcumin-Cu(II) and -Zn(II) Complexes Systems and Their Pharmacological Implications. Nutrients 2017, 10, 28. [Google Scholar] [CrossRef]
- Seeta Rama Raju, G.; Pavitra, E.; Purnachandra Nagaraju, G.; Ramesh, K.; El-Rayes, B.F.; Yu, J.S. Imaging and Curcumin Delivery in Pancreatic Cancer Cell Lines Using PEGylated α-Gd2(MoO4)3 Mesoporous Particles. Dalton Trans. 2014, 43, 3330–3338. [Google Scholar] [CrossRef]
- Vančo, J.; Trávníček, Z.; Hošek, J.; Malina, T.; Dvořák, Z. Copper(II) Complexes Containing Natural Flavonoid Pomiferin Show Considerable In Vitro Cytotoxicity and Anti-Inflammatory Effects. Int. J. Mol. Sci. 2021, 22, 7626. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Andrades, N.; Paulino, N.; Sawaya, A.; Eberlin, M.; Marcucci, M.; Favero, G.; Novak, E.; Bydlowski, S. Synthesis and Characterization of a Metal Complex Containing Naringin and Cu, and its Antioxidant, Antimicrobial, Antiinflammatory and Tumor Cell Cytotoxicity. Molecules 2007, 12, 1352–1366. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Castro, A.J.; Zapata-Morales, J.R.; Hernández-Munive, A.; Campos-Xolalpa, N.; Pérez-Gutiérrez, S.; Pérez-González, C. Synthesis, Antinociceptive and Anti-Inflammatory Effects of Porphyrins. Bioorg. Med. Chem. 2015, 23, 2529–2537. [Google Scholar] [CrossRef] [PubMed]
- Ran, P.; Xia, T.; Zheng, H.; Lei, F.; Zhang, Z.; Wei, J.; Li, X. Light-Triggered Theranostic Hydrogels for Real-Time Imaging and on-Demand Photodynamic Therapy of Skin Abscesses. Acta Biomater. 2023, 155, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Carrenho, L.Z.B.; Moreira, C.G.; Vandresen, C.C.; Gomes Junior, R.; Gonçalves, A.G.; Barreira, S.M.W.; Noseda, M.D.; Duarte, M.E.R.; Ducatti, D.R.B.; Dietrich, M.; et al. Investigation of Anti-Inflammatory and Anti-Proliferative Activities Promoted by Photoactivated Cationic Porphyrin. Photodiagnosis Photodyn. Ther. 2015, 12, 444–458. [Google Scholar] [CrossRef] [PubMed]
- Furlan, C.; Berenbeim, J.A.; Dessent, C.E.H. Photoproducts of the Photodynamic Therapy Agent Verteporfin Identified via Laser Interfaced Mass Spectrometry. Molecules 2020, 25, 5280. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, M. Verteporfin. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY, USA, 2009; pp. 1–7. ISBN 978-0-08-055232-3. [Google Scholar]
- Wang, Y.; Wang, L.; Wise, J.T.F.; Shi, X.; Chen, Z. Verteporfin Inhibits Lipopolysaccharide-Induced Inflammation by Multiple Functions in RAW 264.7 cells. Toxicol. Appl. Pharmacol. 2020, 387, 114852. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Pouso-Vázquez, E.; Bai, X.; Batallé, G.; Roch, G.; Pol, O. Effects of Heme Oxygenase 1 in the Molecular Changes and Neuropathy Associated with type 2 Diabetes in Mice. Biochem. Pharmacol. 2022, 199, 114987. [Google Scholar] [CrossRef]
- Schaefer, R.E.M.; Callahan, R.C.; Atif, S.M.; Orlicky, D.J.; Cartwright, I.M.; Fontenot, A.P.; Colgan, S.P.; Onyiah, J.C. Disruption of MONOCYTE-Macrophage Differentiation and Trafficking by a Heme Analog during Active Inflammation. Mucosal Immunol. 2022, 15, 244–256. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, K.; Ni, J.; Hua, Y.; He, F.; Li, L. Role of the CCL2-CCR2 Axis in Cardiovascular Disease: Pathogenesis and Clinical Implications. Front. Immunol. 2022, 13, 975367. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Choi, Y.; Leem, J.; Song, J.E. Heme Oxygenase-1 Induction by Cobalt Protoporphyrin Ameliorates Cholestatic Liver Disease in a Xenobiotic-Induced Murine Model. Int. J. Mol. Sci. 2021, 22, 8253. [Google Scholar] [CrossRef] [PubMed]
- Johns, D.G.; Zelent, D.; Ao, Z.; Bradley, B.T.; Cooke, A.; Contino, L.; Hu, E.; Douglas, S.A.; Jaye, M.C. Heme-Oxygenase Induction Inhibits Arteriolar Thrombosis In Vivo: Effect of The non-Substrate Inducer Cobalt Protoporphyrin. Eur. J. Pharmacol. 2009, 606, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Song, Y.; Tian, Y.; Chen, B.; Liang, Y.; Liang, Y.; Li, C.; Li, Y. TCPP/MgO-loaded PLGA Microspheres Combining Photodynamic Antibacterial Therapy with PBM-Assisted Fibroblast Activation to Treat Periodontitis. Biomater. Sci. 2023, 11, 2828–2844. [Google Scholar] [CrossRef] [PubMed]
- Allyn, M.M.; Rincon-Benavides, M.A.; Chandler, H.L.; Higuita-Castro, N.; Palmer, A.F.; Swindle-Reilly, K.E. Sustained Release of Heme-Albumin as a Potential Novel Therapeutic Approach for Age-Related Macular Degeneration. Biomater. Sci. 2022, 10, 7004–7014. [Google Scholar] [CrossRef] [PubMed]
- Pfefferlé, M.; Ingoglia, G.; Schaer, C.A.; Hansen, K.; Schulthess, N.; Humar, R.; Schaer, D.J.; Vallelian, F. Acute Hemolysis and Heme Suppress Anti-CD40 Antibody-Induced Necro-Inflammatory Liver Disease. Front. Immunol. 2021, 12, 680855. [Google Scholar] [CrossRef] [PubMed]
- Stover, K.; Fukuyama, T.; Young, A.T.; Daniele, M.A.; Oberley, R.; Crapo, J.D.; Bäumer, W. Topically Applied Manganese-Porphyrins BMX-001 and BMX-010 Display a Significant Anti-Inflammatory Response in a Mouse Model of Allergic Dermatitis. Arch. Dermatol. Res. 2016, 308, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, P.; Yang, Y.; Dai, S.; Wang, Z.; Zhao, A.; Huang, N.; Chen, J.; Yang, P. Dual-catalytic CuTPP/TiO2 Nanoparticles for Surface Catalysis Engineering of Cardiovascular Materials. Mater. Today Bio 2022, 17, 100494. [Google Scholar] [CrossRef]
- Tsukiji, N.; Osada, M.; Sasaki, T.; Shirai, T.; Satoh, K.; Inoue, O.; Umetani, N.; Mochizuki, C.; Saito, T.; Kojima, S.; et al. Cobalt hematoporphyrin Inhibits CLEC-2-Podoplanin Interaction, Tumor Metastasis, and Arterial/Venous Thrombosis in Mice. Blood Adv. 2018, 2, 2214–2225. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoupras, A.; Pafli, S.; Stylianoudakis, C.; Ladomenou, K.; Demopoulos, C.A.; Philippopoulos, A. Anti-Inflammatory and Antithrombotic Potential of Metal-Based Complexes and Porphyrins. Compounds 2024, 4, 376-400. https://doi.org/10.3390/compounds4020023
Tsoupras A, Pafli S, Stylianoudakis C, Ladomenou K, Demopoulos CA, Philippopoulos A. Anti-Inflammatory and Antithrombotic Potential of Metal-Based Complexes and Porphyrins. Compounds. 2024; 4(2):376-400. https://doi.org/10.3390/compounds4020023
Chicago/Turabian StyleTsoupras, Alexandros, Sofia Pafli, Charilaos Stylianoudakis, Kalliopi Ladomenou, Constantinos A. Demopoulos, and Athanassios Philippopoulos. 2024. "Anti-Inflammatory and Antithrombotic Potential of Metal-Based Complexes and Porphyrins" Compounds 4, no. 2: 376-400. https://doi.org/10.3390/compounds4020023
APA StyleTsoupras, A., Pafli, S., Stylianoudakis, C., Ladomenou, K., Demopoulos, C. A., & Philippopoulos, A. (2024). Anti-Inflammatory and Antithrombotic Potential of Metal-Based Complexes and Porphyrins. Compounds, 4(2), 376-400. https://doi.org/10.3390/compounds4020023