Different Chain Length Tannic Acid Preparations as Coating Agents for Zein Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. HPLC Analysis
2.2.2. Polyphenol Precipitability by Protein
2.2.3. Nanoparticle Synthesis
2.2.4. Dynamic Light Scattering
2.2.5. Infrared Spectrometry
2.2.6. Scanning Electron Microscopy
2.2.7. Circular Dichromsim Spectrometry
2.2.8. Nanoparticle Digestibility
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Tannic Acids
3.2. Size, PDI and Zeta Potential of Zein Nanoparticles
3.3. Intermolecular Interactions between Zein and TA in Zein Nanoparticles
3.4. Morphology of Zein Nanoparticles
3.5. Protein Secondary Structure in Zein Nanoparticles
3.6. Digestibility of Zein Nanoparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lai, L.F.; Guo, H.X. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int. J. Pharm. 2011, 404, 317–323. [Google Scholar] [CrossRef]
- Jahanshahi, M.; Babaei, Z. Protein nanoparticle: A unique system as drug delivery vehicles. Afr. J. Biotech. 2008, 7, 4926–4934. [Google Scholar]
- Redhead, H.M.; Davis, S.S.; Illum, L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characterisation and in vivo evaluation. J. Control. Release 2001, 70, 353–363. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloid Surf. B-Biointerfaces 2016, 146, 532–543. [Google Scholar] [CrossRef]
- Jia, C.S.; Cao, D.D.; Ji, S.P.; Zhang, X.M.; Muhoza, B. Tannic acid-assisted cross-linked nanoparticles as a delivery system of eugenol: The characterization, thermal degradation and antioxidant properties. Food Hydrocoll. 2020, 104, 105717. [Google Scholar] [CrossRef]
- Xu, H.L.; Jiang, Q.R.; Reddy, N.; Yang, Y.Q. Hollow nanoparticles from zein for potential medical applications. J. Mater. Chem. 2011, 21, 18227–18235. [Google Scholar] [CrossRef]
- Hu, S.Q.; Wang, T.R.; Fernandez, M.L.; Luo, Y.C. Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin. Food Hydrocoll. 2016, 61, 821–831. [Google Scholar] [CrossRef]
- Wang, Y.; Padua, G.W. Nanoscale characterization of zein self-assembly. Langmuir 2012, 28, 2429–2435. [Google Scholar] [CrossRef]
- Lee, S.H.; Hamaker, B.R. Cys155 of 27 kda maize gamma-zein is a key amino acid to improve its in vitro digestibility. FEBS Lett. 2006, 580, 5803–5806. [Google Scholar] [CrossRef]
- Luo, Y.C.; Teng, Z.; Wang, Q. Development of zein nanoparticles coated with carboxymethyl chitosn for encapsulation and controlled release of vitamin d3. J. Agric. Food Chem. 2012, 60, 836–843. [Google Scholar] [CrossRef]
- Luo, Y.C.; Zhang, B.C.; Whent, M.; Yu, L.L.; Wang, Q. Preparation and characterization of zein/chitosan complex for encapsulation of alpha-tocopherol, and its in vitro controlled release study. Colloid Surf. B-Biointerfaces 2011, 85, 145–152. [Google Scholar] [CrossRef]
- Hagerman, A.E. Fifty years of polyphenol-protein complexes. Rec. Adv. Polyphen. Res. 2012, 3, 71–97. [Google Scholar]
- Pizzi, A. Covalent and ionic bonding between tannin and collagen in leather-making and shrinking: A MALDI-Tof study. J. Renew. Mat. 2021, 9, 1345–1364. [Google Scholar] [CrossRef]
- Aron, P.M.; Shellhammer, T.H. A discussion of polyphenols in beer physical and flavour stability. J. Inst. Brew. 2010, 116, 369–380. [Google Scholar] [CrossRef]
- Baldwin, A.; Booth, B.W. Biomedical applications of tannic acid. J. Biomater. Appl. 2022, 36, 1503–1523. [Google Scholar] [CrossRef]
- Al-Hijazeen, M.; Lee, E.J.; Mendonca, A.; Ahn, D.U. Effects of tannic acid on lipid and protein oxidation, color, and volatiles of raw and cooked chicken breast meat during storage. Antioxidants 2016, 5, 19. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Jiao, C.; Zhao, Y.; Zhang, J.; Wang, H. Self-assembled polyvinyl alcohol–tannic acid hydrogels with diverse microstructures and good mechanical properties. ACS Omega 2018, 3, 11788–11795. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, M.; Tian, L.; Guan, Y.; Zhang, Y. Release of polyphenolic drugs from dynamically bonded layer-by-layer films. ACS Appl. Mater. Interfaces 2013, 5, 3541–3548. [Google Scholar] [CrossRef]
- Gulcin, I.; Huyut, Z.; Elmastas, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Pizzi, A.; Pasch, H.; Giovando, S. Polymer structure of commercial hydrolyzable tannins by matrix-assisted laser desorption/ionization-time-of flight mass spectrometry. J. Appl. Polym. Sci. 2009, 113, 3847–3859. [Google Scholar] [CrossRef]
- Kinraide, T.; Hagerman, A.E. Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al3+), copper (Cu2+) and selenate (SeO42−) in wheat roots. A descriptive and mathematical assessment. Physiol. Plant. 2010, 139, 68–79. [Google Scholar] [CrossRef]
- Engstrom, M.T.; Virtanen, V.; Salminen, J.-P. Influence of the hydrolyzable tannin structure on the characteristics of insoluble hydrolyzable tannin-protein complexes. J. Agric. Food Chem. 2022, 70, 13036–13048. [Google Scholar] [CrossRef]
- Gross, G.G. From lignins to tannins: Forty years of enzyme studies on the biosynthesis of phenolic compounds. Phytochemistry 2008, 69, 3018–3031. [Google Scholar] [CrossRef]
- Chen, Y.; Hagerman, A.E. Characterization of soluble non-covalent complexes between bovine serum albumin and beta-1,2,3,4,6-penta-O-galloyl-d-glucopyranose by MALDI-TOF MS. J. Agric. Food Chem. 2004, 52, 4008–4011. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Butler, L.G. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 1978, 26, 809–812. [Google Scholar] [CrossRef]
- Simonato, B.; Mainente, F.; Selvatico, E.; Violoni, M.; Pasini, G. Assessment of the fining efficiency of zeins extracted from commercial corn gluten and sensory analysis of the treated wine. LWT-Food Sci. Technol. 2013, 54, 549–556. [Google Scholar] [CrossRef]
- Scott, T.A. Refractive index of ethanol-water mixtures and density and refractive index of ethanol-water-ethyl ether mixtures. J. Phys. Chem. 1946, 50, 406–412. [Google Scholar] [CrossRef]
- Anonymous Viscosity of Two Component Mixtures. Available online: https://www.rheosense.com/applications/viscosity/two-component-mixtures (accessed on 22 November 2023).
- Miles, A.J.; Janes, R.W.; Wallace, B.A. Tools and methods for circular dichroism spectroscopy of proteins: A tutorial review. Chem. Soc. Rev. 2021, 50, 8400–8413. [Google Scholar] [CrossRef]
- Sato, M.; Sasaki, T.; Kobayashi, M.; Kise, H. Time-dependent structure and activity changes of alpha-chymotrypsin in water/alcohol mixed solvents. Biosci. Biotechnol. Biochem. 2000, 64, 2552–2558. [Google Scholar] [CrossRef]
- Schagger, H. Electrophoretic isolation of membrane-proteins from acrylamide gels. Appl. Biochem. Biotechnol. 1994, 48, 185–203. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Rice, M.E.; Ritchard, N.T. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4 → 8) catechin (procyanidin). J. Agric. Food Chem. 1998, 46, 2590–2595. [Google Scholar] [CrossRef]
- Liu, Q.G.; Jing, Y.Q.; Han, C.P.; Zhang, H.; Tian, Y.M. Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties. Food Hydrocoll. 2019, 93, 432–442. [Google Scholar] [CrossRef]
- Xu, H.L.; Zhang, Y.; Jiang, Q.R.; Reddy, N.; Yang, Y.Q. Biodegradable hollow zein nanoparticles for removal of reactive dyes from wastewater. J. Environ. Manag. 2013, 125, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Ghigo, G.; Berto, S.; Minella, M.; Vione, D.; Alladio, E.; Nurchi, V.M.; Lachowicz, J.; Daniele, P.G. New insights into the protogenic and spectroscopic properties of commercial tannic acid: The role of gallic acid impurities. New J. Chem. 2018, 42, 7703–7712. [Google Scholar] [CrossRef]
- Dai, L.; Sun, C.X.; Wang, D.; Gao, Y.X. The interaction between zein and lecithin in ethanol-water solution and characterization of zein-lecithin composite colloidal nanoparticles. PLoS ONE 2016, 11, e0167172. [Google Scholar] [CrossRef] [PubMed]
- Tangarfa, M.; Semlali Aouragh Hassani, N.; Alaoui, A. Behavior and mechanism of tannic acid adsorption on the calcite surface: Isothermal, kinetic, and thermodynamic studies. ACS Omega 2019, 4, 19647–19654. [Google Scholar] [CrossRef] [PubMed]
- Abd-El Hafeez, S.I.; Eleraky, N.E.; Hafez, E.; Abouelmagd, S.A. Design and optimization of metformin hydrophobic ion pairs for efficient encapsulation in polymeric drug carriers. Sci. Rep. 2022, 12, 5737. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Guo, J.; Yin, S.W.; Wang, J.M.; Yang, X.Q. Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles. J. Agric. Food Chem. 2015, 63, 7405–7414. [Google Scholar] [CrossRef]
- Erickson, D.P.; Ozturk, O.K.; Selling, G.; Chen, F.; Campanella, O.H.; Hamaker, B.R. Corn zein undergoes conformational changes to higher β-sheet content during its self-assembly in an increasingly hydrophilic solvent. Int. J. Biol. Macromol. 2020, 157, 232–239. [Google Scholar] [CrossRef]
- Zhao, S.; Deng, Y.; Yan, T.; Yang, X.; Xu, W.; Liu, D.; Wang, W. Explore the interaction between ellagic acid and zein using multi-spectroscopy analysis and molecular docking. Foods 2022, 11, 2764. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, M. Interaction behaviors and structural characteristics of zein/NaTC nanoparticles. RSC Adv. 2019, 9, 5748–5755. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, L.B.; Jiang, L.J.; Wang, Y.S.; Yang, G.X.; He, G.Y. Effects of tannic acid on gluten protein structure, dough properties and bread quality of chinese wheat. J. Sci. Food Agric. 2010, 90, 2462–2468. [Google Scholar] [CrossRef] [PubMed]
- Hamaker, B.R.; Kirleis, A.W.; Butler, L.G.; Axtell, J.D.; Mertz, E.T. Improving the in vitro protein digestibility of sorghum with reducing agents. Proc. Natl. Acad. Sci. USA 1987, 84, 626–628. [Google Scholar] [CrossRef]
- Barbehenn, R.V.; Jones, C.P.; Hagerman, A.E.; Karonen, M.; Salminen, J.P. Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high ph: Potential impact on caterpillars. J. Chem. Ecol. 2006, 32, 2253–2267. [Google Scholar] [CrossRef]
Tannic Acid Preparation | ||||
---|---|---|---|---|
MAL | FIS | ACR | GFS | |
% of 1–4 GG 1 | 83 | 51 | 35 | 23 |
% of 5–8 GG 1 | 17 | 49 | 65 | 77 |
Chain length 2 | Short | Mixed | Long | Long |
Coating | Diameter 1 (nm) | PDI 1 | Zeta Potential 1 (mV) |
---|---|---|---|
Uncoated | 200 ± 4 | 0.082 ± 0.012 | −26.7 ± 0.3 |
MAL (short) | 189 ± 3 | 0.044 ± 0.011 * | −33.7 ± 0.3 ** |
FIS (mixed) | 186 ± 1 ** | 0.048 ± 0.010 | −36.0 ± 0.6 ** |
PGG (pure) | 185 ± 1 ** | 0.046 ± 0.019 | −36.7 ± 0.3 ** |
ACR (long) | 179 ± 0 ** | 0.047 ± 0.017 | −35.3 ± 0.7 ** |
GFS (long) | 183 ± 1 ** | 0.062 ± 0.023 | −35.0 ± 1.5 ** |
Coating | Diameter (nm) 1 |
---|---|
Uncoated | 156 ± 7 |
MAL (short) | 145 ± 4 |
FIS (mixed) | 151 ± 5 |
PGG (pure) | 136 ± 4 *** |
ACR (long) | 134 ± 4 *** |
GFS (long) | 140 ± 5 *** |
Coating | Average Digestion (%) 1 |
---|---|
Uncoated | 42.8 ± 6.5 |
MAL (short) | 62.4 ± 5.5 ** |
FIS (mixed) | 54.9 ± 13.8 |
PGG (pure) | 29.7 ± 7.5 |
ACR (long) | 40.4 ± 4.4 |
GFS (long) | 40.7 ± 12.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallikarachchi, S.Y.; Rotich, N.C.; Gordon, E.; Hagerman, A.E. Different Chain Length Tannic Acid Preparations as Coating Agents for Zein Nanoparticles. Compounds 2024, 4, 401-414. https://doi.org/10.3390/compounds4020024
Mallikarachchi SY, Rotich NC, Gordon E, Hagerman AE. Different Chain Length Tannic Acid Preparations as Coating Agents for Zein Nanoparticles. Compounds. 2024; 4(2):401-414. https://doi.org/10.3390/compounds4020024
Chicago/Turabian StyleMallikarachchi, Sadeepa Y., Nancy C. Rotich, Emma Gordon, and Ann E. Hagerman. 2024. "Different Chain Length Tannic Acid Preparations as Coating Agents for Zein Nanoparticles" Compounds 4, no. 2: 401-414. https://doi.org/10.3390/compounds4020024
APA StyleMallikarachchi, S. Y., Rotich, N. C., Gordon, E., & Hagerman, A. E. (2024). Different Chain Length Tannic Acid Preparations as Coating Agents for Zein Nanoparticles. Compounds, 4(2), 401-414. https://doi.org/10.3390/compounds4020024