Land Use and Water-Quality Joint Dynamics of the Córrego da Formiga, Brazilian Cerrado Headwaters
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area Characterization
2.2. Land-Use and -Cover (LULC) Mapping
2.3. Field Monitoring and Water-Sampling Methods
2.4. Rainfall Characteristics of the Studied Area
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Flow and Land-Use and -Cover in the Córrego da Formiga
3.2. Statistical Analysis of Water-Quality Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, C.C.; Calazans, G.M.; Oliveira, S.C. Assessment of Spatial Variations in the Surface Water Quality of the Velhas River Basin, Brazil, Using Multivariate Statistical Analysis and Nonparametric Statistics. Environ. Monit. Assess. 2019, 191, 164. [Google Scholar] [CrossRef]
- Veras, D.S.; Castro, E.R.; Lustosa, G.S.; Azevêdo, C.A.S.; Juen, L. Evaluating the Habitat Integrity Index as a Potential Surrogate for Monitoring the Water Quality of Streams in the Cerrado-Caatinga Ecotone in Northern Brazil. Environ. Monit. Assess. 2019, 191, 562. [Google Scholar] [CrossRef]
- Oliveira, M.E.G.; Silva, M.V.; Almeida, G.L.P.; Pandorfi, H.; Oliveira Lopes, P.M.; Manrique, D.R.C.; Santos, A.; Jardim, A.M.R.F.; Giongo, P.R.; Montenegro, A.A.A.; et al. Investigation of Pre and Post Environmental Impact of the Lockdown (COVID-19) on the Water Quality of the Capibaribe and Tejipió Rivers, Recife Metropolitan Region, Brazil. J. S. Am. Earth Sci. 2022, 118, 103965. [Google Scholar] [CrossRef]
- BRASIL LEI No 9.433, DE 8 DE JANEIRO DE 1997. Available online: http://www.planalto.gov.br/ccivil_03/leis/l9433.htm (accessed on 30 August 2022).
- Calazans, G.M.; Pinto, C.C.; Costa, E.P.; Perini, A.F.; Oliveira, S.C. Using Multivariate Techniques as a Strategy to Guide Optimization Projects for the Surface Water Quality Network Monitoring in the Velhas River Basin, Brazil. Environ. Monit. Assess. 2018, 190, 726. [Google Scholar] [CrossRef]
- Calazans, G.M.; Pinto, C.C.; Costa, E.P.; Perini, A.F.; Oliveira, S.C. The Use of Multivariate Statistical Methods for Optimization of the Surface Water Quality Network Monitoring in the Paraopeba River Basin, Brazil. Environ. Monit. Assess. 2018, 190, 491. [Google Scholar] [CrossRef]
- Soares, A.L.C.; Pinto, C.C.; Oliveira, S.C. Impacts of Anthropogenic Activities and Calculation of the Relative Risk of Violating Surface Water Quality Standards Established by Environmental Legislation: A Case Study from the Piracicaba and Paraopeba River Basins, Brazil. Environ. Sci. Pollut. Res. 2020, 27, 14085–14099. [Google Scholar] [CrossRef]
- Barcellos, D.S.; Schimaleski, A.P.C.; Souza, F.T. Downsizing Water Quality Monitoring Programs in River Basins in Brazil. Urban Water J. 2021, 18, 223–236. [Google Scholar] [CrossRef]
- Aleixo, B.; Pena, J.L.; Heller, L.; Rezende, S. Infrastructure Is a Necessary but Insufficient Condition to Eliminate Inequalities in Access to Water: Research of a Rural Community Intervention in Northeast Brazil. Sci. Total Environ. 2019, 652, 1445–1455. [Google Scholar] [CrossRef]
- Santos, S.M.; Farias, M.M.M.W.E.C. Potential for Rainwater Harvesting in a Dry Climate: Assessments in a Semiarid Region in Northeast Brazil. J. Clean. Prod. 2017, 164, 1007–1015. [Google Scholar] [CrossRef]
- Soares, J.A.B.; Camargo, G.; Giongo, P.R.; Gomes, L.F.; Costa, A.R.; Silva, P.C. Estudo Hidrológico Das Bacias Hidrograficas Em Santa Helena De Goiás. Braz. J. Dev. 2020, 6, 35629–35647. [Google Scholar] [CrossRef]
- Dantas, J.C.; Silva, R.M.; Santos, C.A.G. Drought Impacts, Social Organization, and Public Policies in Northeastern Brazil: A Case Study of the Upper Paraíba River Basin. Environ. Monit. Assess. 2020, 192, 317. [Google Scholar] [CrossRef]
- Donadio, N.M.M.; Galbiatti, J.A.; Paula, R.C. Qualidade Da Água de Nascentes Com Diferentes Usos Do Solo Na Bacia Hidrográfica Do Córrego Rico, São Paulo, Brasil. Eng. Agrícola 2005, 25, 115–125. [Google Scholar] [CrossRef]
- Viana, L.F.; Súarez, Y.R.; Cardoso, C.A.L.; Crispim, B.A.; Cavalcante, D.N.C.; Grisolia, A.B.; Lima-Junior, S.E. The Response of Neotropical Fish Species (Brazil) on the Water Pollution: Metal Bioaccumulation and Genotoxicity. Arch. Environ. Contam. Toxicol. 2018, 75, 476–485. [Google Scholar] [CrossRef]
- Duarte, G.S.C.; Lehun, A.L.; Leite, L.A.R.; Consolin-Filho, N.; Bellay, S.; Takemoto, R.M. Acanthocephalans Parasites of Two Characiformes Fishes as Bioindicators of Cadmium Contamination in Two Neotropical Rivers in Brazil. Sci. Total Environ. 2020, 738, 140339. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Fontes, M.P.F.; Pacheco, A.A.; Lima, H.N.; Santos, J.Z.L. Risk Assessment of Trace Elements Pollution of Manaus Urban Rivers. Sci. Total Environ. 2020, 709, 134471. [Google Scholar] [CrossRef]
- Böger, B.; Surek, M.; Vilhena, R.O.; Fachi, M.M.; Junkert, A.M.; Santos, J.M.M.F.; Domingos, E.L.; Cobre, A.F.; Momade, D.R.; Pontarolo, R. Occurrence of Antibiotics and Antibiotic Resistant Bacteria in Subtropical Urban Rivers in Brazil. J. Hazard. Mater. 2021, 402, 123448. [Google Scholar] [CrossRef]
- Branche, E. The Multipurpose Water Uses of Hydropower Reservoir: The SHARE Concept. Comptes Rendus Phys. 2017, 18, 469–478. [Google Scholar] [CrossRef]
- Hogeboom, R.J.; Knook, L.; Hoekstra, A.Y. The Blue Water Footprint of the World’s Artificial Reservoirs for Hydroelectricity, Irrigation, Residential and Industrial Water Supply, Flood Protection, Fishing and Recreation. Adv. Water Resour. 2018, 113, 285–294. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Coe, M.T.; Castanho, A.; Graesser, J.; Johnson, M.S. Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment. Water 2018, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Cetin, M. Agricultural Water Use. In Water Resources of Turkey; Springer: Cham, Switzerland, 2020; Volume 2, pp. 257–302. [Google Scholar]
- Peixoto, R.M.; Giongo, P.R.; Backes, C.; Silva, P.C. Soil and Water Conservation Techniques in Agriculture: Characterization of the Contribution Area of Dams. Res. Soc. Dev. 2022, 11, e15411526694. [Google Scholar] [CrossRef]
- Rasul, G.; Neupane, N.; Hussain, A.; Pasakhala, B. Beyond Hydropower: Towards an Integrated Solution for Water, Energy and Food Security in South Asia. Int. J. Water Resour. Dev. 2019, 37, 466–490. [Google Scholar] [CrossRef] [Green Version]
- Tundisi, J.G.; Tundisi, T.M. Recursos Hídricos No Século XXI, 1st ed.; Oficina de Textos: Viçosa, Brazil, 2011; ISBN 9788579750120. [Google Scholar]
- Resende, F.M.; Denman, L.A.C.; Selva, G.V.; Campanhão, L.M.B.; Nobre, R.L.G.; Jimenez, Y.G.; Lima, E.M.; Niemeyer, J. A Conceptual Model to Assess the Impact of Anthropogenic Drivers on Water-Related Ecosystem Services in the Brazilian Cerrado. Biota Neotrop. 2020, 20, e20190899. [Google Scholar] [CrossRef]
- Telles, T.S.; Reydon, B.P.; Maia, A.G. Effects of No-Tillage on Agricultural Land Values in Brazil. Land Use Policy 2018, 76, 124–129. [Google Scholar] [CrossRef]
- Buainain, A.M.; Garcia, J.R. Agriculture and the Environment: A Conflictive and Ambiguous Antinomy in Recent Brazilian Development. In Agricultural Development in Brazil: The Rise of a Global Agro-food Power; Taylor and Francis: Abingdon, UK, 2019; pp. 139–151. ISBN 9781351029735. [Google Scholar]
- Lopes, V.C.; Parente, L.L.; Baumann, L.R.F.; Miziara, F.; Ferreira, L.G. Land-Use Dynamics in a Brazilian Agricultural Frontier Region, 1985–2017. Land Use Policy 2020, 97, 104740. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- CONAMA RESOLUÇÃO CONAMA N° 357, DE 17 DE MARÇO DE 2005. Available online: https://www.icmbio.gov.br/cepsul/images/stories/legislacao/Resolucao/2005/res_conama_357_2005_classificacao_corpos_agua_rtfcda_altrd_res_393_2007_397_2008_410_2009_430_2011.pdf (accessed on 29 August 2022).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Zeitschrif 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- INMET BDMEP—Banco de Dados Meteorológicos Para Ensino e Pesquisa. Available online: https://www.gov.br/agricultura/pt-br/assuntos/inmet?r=bdmep/bdmep (accessed on 30 August 2022).
- MapBiomas Brasil PLATAFORMA DE MAPA E DADOS. Available online: https://plataforma.brasil.mapbiomas.org/?activeBaseMap=9&layersOpacity=70&activeModule=coverage&activeModuleContent=coverage%3Acoverage_main&activeYear=2021&mapPosition=-15.072124%2C-51.547852%2C4&timelineLimitsRange=1985%2C2021&baseParams[territoryType]= (accessed on 30 August 2022).
- Pinheiro, A.; Schoen, C.; Schultz, J.; HEINZ, K.G.H.; Pinheiro, I.G.; Deschamps, F.C. Relação Entre o Uso Do Solo e a Qualidade Da Água Em Bacia Hidrográfica Rural No Bioma Mata Atlântica. Rev. Bras. Recur. Hídricos 2014, 19, 127–139. [Google Scholar] [CrossRef]
- SIEG Arquivo Shapefile Bacia Hidrográfica. Available online: http://www.sieg.go.gov.br/siegdownloads/ (accessed on 30 August 2022).
- APHA; WWA; WPCF. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Carvalho, T.M. Técnicas de Medição de Vazão Por Meios Convencionais e Não Convencionais. Rev. Bras. Geogr. Física 2008, 1, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, K.; Annable, M.; Cho, J.; Rao, P.S.C.; Klammler, H. A Direct Passive Method for Measuring Water and Contaminant Fluxes in Porous Media. J. Contam. Hydrol. 2004, 75, 155–181. [Google Scholar] [CrossRef]
- EPA. Volunteer Stream Monitoring: A Methods Manual; EPA: Washignton, DC, USA, 1997; pp. 134–138. [Google Scholar]
- Paredes-Trejo, F.J.; Barbosa, H.A.; Kumar, T.V.L. Validating CHIRPS-Based Satellite Precipitation Estimates in Northeast Brazil. J. Arid Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS Spectra Processing, Multi-Omics Integration and Covariate Adjustment of Global Metabolomics Data. Nat. Protoc. 2011, 6, 743–760. [Google Scholar] [CrossRef] [PubMed]
- Taveira, J.H.S.; Borém, F.M.; Figueiredo, L.P.; Reis, N.; Franca, A.S.; Harding, S.A.; Tsai, C.J. Potential Markers of Coffee Genotypes Grown in Different Brazilian Regions: A Metabolomics Approach. Food Res. Int. 2014, 61, 75–82. [Google Scholar] [CrossRef]
- Bermudez-Edo, M.; Barnaghi, P.; Moessner, K. Analysing Real World Data Streams with Spatio-Temporal Correlations: Entropy vs. Pearson Correlation. Autom. Constr. 2018, 88, 87–100. [Google Scholar] [CrossRef]
- Gonçalves, C.S.; Rheinheimer, D.S.; Pellegrini, J.B.R.; Kist, S.L. Qualidade Da Água Numa Microbacia Hidrográfica de Cabeceira Situada Em Região Produtora de Fumo. Rev. Bras. Eng. Agrícola Ambient. 2005, 9, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.S.; Kaleita, A.; Barbosa, C.C.F.; Fassoni-Andrade, A.C.; Lobo, F.L.; Novo, E.M.L.M. Remote Sensing of Large Reservoir in the Drought Years: Implications on Surface Water Change and Turbidity Variability of Sobradinho Reservoir (Northeast Brazil). Remote Sens. Appl. Soc. Environ. 2019, 13, 275–288. [Google Scholar] [CrossRef]
- Michelan, D.C.G.S.; Batista, I.F.; Batista, D.F.; Santos, D.G.; Mendonça, L.C.; Lima, D.M.F. Desempenho Das Etapas de Tratamento de Água, Da Estação de Tratamento de Água Poxim. Sci. Cum. Ind. 2019, 7, 7–14. [Google Scholar] [CrossRef]
S1 | S2 | S3 | S4 | S5 | 2015 ha | |
---|---|---|---|---|---|---|
Water bodies | 0.00 | 0.90 | 1.15 | 0.55 | 0.15 | 7.26 |
Sugar cane | 0.00 | 21.20 | 58.80 | 59.50 | 62.43 | 2936.17 |
Cerrado | 7.40 | 10.90 | 12.60 | 16.30 | 12.39 | 582.54 |
Pasture | 42.80 | 48.10 | 18.60 | 15.40 | 19.40 | 909.46 |
Agriculture | 0.00 | 0.00 | 0.00 | 2.50 | 1.58 | 74.90 |
Other uses | 0.00 | 6.30 | 4.30 | 3.10 | 2.20 | 106.13 |
Urban | 49.80 | 12.60 | 4.50 | 2.60 | 1.86 | 87.40 |
Total | 100.00 | 100.00 | 99.95 | 99.95 | 100.01 | 4703.90 |
Area (ha) | 93.00 | 554.60 | 1899.10 | 3303.90 | 4703.80 | |
Area % | 1.98 | 11.79 | 40.37 | 70.24 | 100.00 |
Time | Means Test | ||||||
---|---|---|---|---|---|---|---|
FV | QM | Residue | CV (%) | May | June | September | December |
Coliforms T | 103,678,000.000 * | 24,434,000 | 58.09 | 8500.0 AB | 2380.0 A | 9880.0 AB | 13,280.0 B |
Escher coli | 78,121,488.266 * | 11,881,513.9 | 133.10 | 8500.00 B | 1056.0 A | 319.60 A | 483.60 A |
Alkalinity | 33.789087 ns | 26.113220 | 21.00 | 23.600 A | 24.400 A | 27.800 A | 21.556 A |
Fluoride | 0.010620 * | 0.000015 | 15.49 | 0.000 A | 0.006 A | 0.000 A | 0.094 B |
Alkali hCO | 57.342420 ns | 23.758220 | 20.45 | 23.600 A | 24.400 A | 27.800 A | 19.556 A |
Aluminum | 0.000784 ns | 0.000374 | 97.85 | 0.0312 A | 0.0264 A | 0.0188 A | 0.0026 A |
Hardness | 54.066667 ns | 26.300 | 21.82 | 22.400 A | 28.400 A | 21.600 A | 21.600 A |
Chloride | 26.450000 * | 5.05625 | 59.96 | 6.500 B | 1.100 A | 4.50 AB | 2.900 AB |
Nitrate | 0.276000 * | 0.01250 | 46.58 | 0.520 B | 0.340 B | 0.100 A | 0.000 A |
Nitrite | 0.000060 ns | 0.000024 | 111.68 | 0.0068 A | 0.0002 A | 0.0076 A | 0.0028 A |
Calcium | 8.940195 ns | 4.501357 | 22.53 | 9.138 A | 11.382 A | 8.495 A | 8.658 A |
Magnesium | 6.714072 * | 1.207553 | 51.39 | 2.238 AB | 3.596 B | 0.776 A | 1.944 AB |
DO | 1.543333 ns | 12.85675 | 119.92 | 3.800 A | 2.720 A | 2.880 A | 2.560 A |
BOD | 0.252125 ns | 0.857875 | 136.71 | 1.000 A | 0.660 A | 0.540 A | 0.510 A |
Iron | 0.384538 ns | 3.033698 | 74.99 | 2.210 A | 2.230 A | 2.732 A | 2.118 A |
Manganese | 0.025333 ns | 0.01100 | 58.27 | 0.280 A | 0.120 A | 0.180 A | 0.140 A |
OM | 15.301833 ns | 3.14000 | 116.96 | 0.000 A | 0.000 A | 3.020 A | 3.040 A |
Turbidity | 3.040 ns | 60.244825 | 49.04 | 20.220 A | 12.956 A | 15.968 A | 14.160 A |
Color | 13,852.657833 ns | 44,523.1707 | 181.72 | 104.680 A | 193.22 A | 76.980 A | 89.580 A |
pH | 193.220 ns | 0.300552 | 8.18 | 6.672 A | 6.652 A | 6.790 A | 6.692 A |
TDS | 18.047618 ns | 8.772277 | 9.94 | 27.794 A | 32.008 A | 28.714 A | 30.666 A |
Conductivity | 57.673833 ns | 32.8515 | 10.64 | 50.560 A | 57.660 A | 51.480 A | 55.760 A |
Colif T | Escher coli | Fluor | Alcal T | Alcal hCO | Al | Dur | Chloride | Nitrate | Nitrite | Ca | Mg | OD | DBO | Fe | Mn | OM | Turbidity | cor | pH | STD | Condut | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ColifT | ||||||||||||||||||||||
Escher coli | 0.314 | |||||||||||||||||||||
Fluor | 0.414 | −0.284 | ||||||||||||||||||||
Alcal | 0.181 | 0.083 | −0.340 | |||||||||||||||||||
Alcal hCO | 0.055 | 0.127 | −0.484 | 0.912 | ||||||||||||||||||
Al | −0.108 | 0.194 | −0.487 | −0.038 | 0.056 | |||||||||||||||||
Dur | −0.211 | 0.050 | −0.220 | 0.431 | 0.409 | −0.034 | ||||||||||||||||
Chloride | 0.282 | 0.404 | −0.209 | −0.294 | −0.176 | 0.476 | −0.371 | |||||||||||||||
Nitrate | −0.421 | 0.418 | −0.617 | 0.038 | 0.137 | 0.540 | 0.253 | 0.242 | ||||||||||||||
Nitrite | 0.429 | 0.215 | −0.214 | 0.046 | 0.086 | 0.420 | −0.348 | 0.643 | 0.068 | |||||||||||||
Ca | −0.173 | 0.111 | −0.214 | 0.440 | 0.418 | −0.001 | 0.994 | −0.342 | 0.286 | −0.346 | ||||||||||||
Mg | −0.281 | 0.122 | −0.082 | −0.086 | −0.103 | 0.173 | 0.769 | −0.256 | 0.358 | −0.326 | 0.761 | |||||||||||
OD | 0.143 | 0.069 | −0.105 | 0.221 | 0.302 | −0.048 | 0.170 | −0.097 | 0.326 | −0.114 | 0.201 | −0.006 | ||||||||||
DBO | −0.091 | −0.004 | −0.121 | −0.217 | −0.135 | 0.011 | −0.140 | 0.016 | 0.375 | −0.199 | −0.117 | −0.080 | 0.746 | |||||||||
Fe | 0.183 | 0.029 | −0.058 | −0.096 | −0.038 | 0.592 | −0.293 | 0.340 | −0.026 | 0.582 | −0.293 | −0.021 | −0.429 | −0.399 | ||||||||
Mn | 0.047 | 0.407 | −0.233 | −0.027 | 0.041 | 0.303 | −0.033 | 0.338 | 0.365 | 0.349 | −0.017 | 0.071 | 0.124 | 0.181 | 0.198 | |||||||
OM | 0.484 | −0.346 | 0.391 | −0.132 | −0.153 | 0.123 | −0.496 | 0.331 | −0.507 | 0.601 | −0.499 | −0.514 | −0.252 | −0.226 | 0.562 | −0.033 | ||||||
Turbidity | 0.156 | 0.257 | −0.133 | −0.053 | 0.020 | 0.584 | −0.199 | 0.415 | 0.262 | 0.557 | −0.179 | 0.057 | −0.141 | −0.068 | 0.759 | 0.745 | 0.318 | |||||
Cor | −0.027 | 0.015 | −0.094 | 0.134 | 0.158 | 0.093 | 0.354 | −0.041 | 0.382 | 0.130 | 0.353 | 0.333 | 0.203 | 0.177 | 0.174 | 0.168 | 0.108 | 0.255 | ||||
pH | 0.133 | 0.014 | −0.038 | 0.804 | 0.706 | −0.371 | 0.497 | −0.399 | −0.023 | −0.179 | 0.516 | −0.020 | 0.364 | −0.084 | −0.518 | −0.083 | −0.291 | −0.321 | −0.021 | |||
STD | −0.016 | −0.020 | 0.210 | 0.137 | 0.119 | −0.041 | 0.276 | −0.426 | −0.236 | −0.339 | 0.270 | 0.359 | −0.378 | −0.569 | 0.376 | −0.256 | −0.052 | 0.052 | 0.069 | −0.044 | ||
Condut | −0.029 | 0.006 | 0.229 | 0.133 | 0.111 | −0.100 | 0.305 | −0.440 | −0.226 | −0.409 | 0.298 | 0.398 | −0.363 | −0.557 | 0.297 | −0.234 | −0.142 | 0.021 | 0.047 | −0.007 | 0.986 | |
Water | −0.159 | −0.034 | −0.004 | −0.115 | −0.111 | −0.360 | 0.151 | −0.002 | −0.109 | 0.013 | 0.117 | 0.056 | 0.053 | −0.169 | −0.358 | −0.200 | −0.214 | −0.430 | −0.333 | 0.157 | −0.236 | −0.226 |
Cane | 0.084 | 0.040 | −0.031 | 0.685 | 0.593 | −0.407 | 0.549 | −0.410 | 0.053 | −0.209 | 0.564 | 0.071 | 0.498 | 0.044 | −0.641 | −0.060 | −0.373 | −0.403 | 0.014 | 0.956 | −0.144 | −0.111 |
Cerrado | −0.075 | −0.012 | −0.022 | 0.603 | 0.440 | −0.452 | 0.494 | −0.386 | −0.058 | −0.211 | 0.491 | 0.068 | 0.007 | −0.277 | −0.579 | −0.134 | −0.361 | −0.421 | −0.140 | 0.868 | −0.092 | −0.048 |
Pasture | −0.032 | 0.078 | 0.021 | −0.653 | −0.539 | 0.287 | −0.340 | 0.441 | −0.105 | 0.164 | −0.369 | 0.078 | −0.489 | −0.145 | 0.558 | 0.061 | 0.262 | 0.315 | −0.007 | −0.911 | 0.215 | 0.195 |
Agriculture | 0.020 | 0.019 | −0.019 | 0.685 | 0.510 | −0.229 | 0.415 | −0.383 | −0.004 | −0.229 | 0.431 | 0.048 | −0.093 | −0.218 | −0.340 | −0.007 | −0.230 | −0.142 | 0.069 | 0.765 | 0.086 | 0.126 |
Others | −0.065 | 0.134 | −0.013 | −0.035 | −0.030 | −0.384 | 0.367 | 0.047 | −0.172 | −0.062 | 0.322 | 0.244 | −0.128 | −0.348 | −0.293 | −0.131 | −0.273 | −0.364 | −0.221 | 0.126 | −0.006 | 0.023 |
Urban | −0.071 | −0.128 | 0.033 | −0.588 | −0.509 | 0.488 | −0.654 | 0.316 | 0.038 | 0.221 | −0.648 | −0.200 | −0.306 | 0.148 | 0.623 | 0.079 | 0.428 | 0.450 | 0.038 | −0.841 | 0.054 | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giongo, P.R.; Oliveira Assis, A.P.A.d.; Silva, M.V.d.; Montenegro, A.A.d.A.; Taveira, J.H.d.S.; Costa, A.R.d.; Silva, P.C.; Giongo, A.M.M.; Pandorfi, H.; Santos, A.J.M.; et al. Land Use and Water-Quality Joint Dynamics of the Córrego da Formiga, Brazilian Cerrado Headwaters. Geographies 2022, 2, 629-641. https://doi.org/10.3390/geographies2040038
Giongo PR, Oliveira Assis APAd, Silva MVd, Montenegro AAdA, Taveira JHdS, Costa ARd, Silva PC, Giongo AMM, Pandorfi H, Santos AJM, et al. Land Use and Water-Quality Joint Dynamics of the Córrego da Formiga, Brazilian Cerrado Headwaters. Geographies. 2022; 2(4):629-641. https://doi.org/10.3390/geographies2040038
Chicago/Turabian StyleGiongo, Pedro Rogerio, Ana Paula Aparecida de Oliveira Assis, Marcos Vinícius da Silva, Abelardo Antônio de Assunção Montenegro, José Henrique da Silva Taveira, Adriana Rodolfo da Costa, Patrícia Costa Silva, Angelina Maria Marcomini Giongo, Héliton Pandorfi, Alessandro José Marques Santos, and et al. 2022. "Land Use and Water-Quality Joint Dynamics of the Córrego da Formiga, Brazilian Cerrado Headwaters" Geographies 2, no. 4: 629-641. https://doi.org/10.3390/geographies2040038
APA StyleGiongo, P. R., Oliveira Assis, A. P. A. d., Silva, M. V. d., Montenegro, A. A. d. A., Taveira, J. H. d. S., Costa, A. R. d., Silva, P. C., Giongo, A. M. M., Pandorfi, H., Santos, A. J. M., Backes, C., Ferreira, M. B., & Silva, J. L. B. d. (2022). Land Use and Water-Quality Joint Dynamics of the Córrego da Formiga, Brazilian Cerrado Headwaters. Geographies, 2(4), 629-641. https://doi.org/10.3390/geographies2040038