Comparison of the Photodynamic Effect of Two Chlorins, Photodithazine and Fotoenticine, in Gliosarcoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Photosensitizers (PS)
2.3. Study of PDZ and FTC Fluorescence in Aqueous Solution
2.4. Chlorin Quantum Yield of Singlet Oxygen Generation
2.5. Chlorin Internalization
2.6. Experimental Design
2.7. Cell Viability Analysis by the Trypan Blue Exclusion Method
2.8. Mitochondrial Activity Analysis
2.9. Analysis of the Type of Cell Death by Imaging Cytometry
2.10. Analysis of Intracellular Formation of Reactive Oxygen Species
3. Results
3.1. Fluorescence Study of PDZ and FTC Chlorins in Aqueous Solution
3.2. Quantm Yield of Singlet Oxygen Generation by Chlorin
Samples | 1O2 Lifetime (µs) | φ1O2 |
---|---|---|
H2TPPS4− | 5.01 ± 0.06 | 0.62 [12] |
PDZ | 5.70 ± 0.10 | 0.70 ± 0.10 |
FTC | 5.50 ± 0.10 | 0.60 ± 0.10 |
3.3. Chlorin Internalization
3.4. Cell Viability Analysis by the Trypan Blue Exclusion Method
3.5. Analysis of the Type of Cell Death by Imaging Cytometry
3.6. Quantification of Reactive Oxygen Species (ROS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerges, C.; Elder, T.; Penuela, M.; Rossetti, N.; Maynard, M.; Jeong, S.; Wright, C.H.; Wright, J.; Zhou, X.; Burant, C.; et al. Comparative epidemiology of gliosarcoma and glioblastoma and the impact of Race on overall survival: A systematic literature review. Clin. Neurol. Neurosurg. 2020, 195, 106054. [Google Scholar] [CrossRef] [PubMed]
- Alam Hashmi, F.; Salim, A.; Shamim, M.S.; Bari, M.E. Biological characteristics and outcomes of Gliosarcoma. J. Pak. Med. Assoc. 2018, 68, 1273–1275. [Google Scholar]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy—mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Tirapelli, L.F.; Morgueti, M.; da Cunha Tirapelli, D.P.; Bagnato, V.S.; Ferreira, J.; Neto, F.S.L.; Peria, F.M.; Oliveira, H.F.; Junior, C.G.C. Apoptosis in Glioma Cells Treated with PDT. Photomed. Laser Surg. 2011, 29, 305–309. [Google Scholar] [CrossRef]
- Vanderesse, D.B.; Muriel, B. Innovations of Photodynamic Therapy for Brain Tumors: Potential of Multifunctional Nanoparticles. J. Carcinog. Mutagen. 2014, s8, 001. [Google Scholar] [CrossRef] [Green Version]
- Akimoto, J. Photodynamic Therapy for Malignant Brain Tumors. Neurol. medico-chirurgica 2016, 56, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Kostron, H. Photodynamic Diagnosis and Therapy and the Brain. Photodyn. Ther. 2010, 635, 261–280. [Google Scholar] [CrossRef]
- Rynda, A.Y.; Rostovtsev, D.M.; Olyushin, V.E.; Zabrodskaya, Y.M. Therapeutic pathomorphosis in malignant glioma tissues after photodynamic therapy with chlorin e6 (reports of two clinical cases). Biomed. Photonics 2018, 7, 4–20. [Google Scholar] [CrossRef]
- Fontana, L.C.; Pinto, J.G.; Pereira, A.H.C.; Soares, C.P.; Raniero, L.J.; Ferreira-Strixino, J. Photodithazine photodynamic effect on viability of 9L/lacZ gliosarcoma cell line. Lasers Med. Sci. 2017, 32, 1245–1252. [Google Scholar] [CrossRef]
- Wilkinson, F.; Helman, W.P.; Ross, A.B. Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. J. Phys. Chem. Ref. Data 1993, 22, 113–262. [Google Scholar] [CrossRef] [Green Version]
- Kustov, A.V.; Smirnova, N.L.; Privalov, O.A.; Moryganova, T.M.; Strelnikov, A.I.; Morshnev, P.K.; Koifman, O.I.; Lyubimtsev, A.V.; Kustova, T.V.; Berezin, D.B. Transurethral Resection of Non-Muscle Invasive Bladder Tumors Combined with Fluorescence Diagnosis and Photodynamic Therapy with Chlorin e6-Type Photosensitizers. J. Clin. Med. 2021, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Uchoa, A.F.; de Oliveira, K.T.; Baptista, M.S.; Bortoluzzi, A.J.; Iamamoto, Y.; Serra, O.A. Chlorin Photosensitizers Sterically Designed To Prevent Self-Aggregation. J. Org. Chem. 2011, 76, 8824–8832. [Google Scholar] [CrossRef] [PubMed]
- Kustov, A.V.; Belykh, D.; Smirnova, N.L.; Venediktov, E.A.; Kudayarova, T.K.; Kruchin, S.; Khudyaeva, I.S.; Berezin, D. Synthesis and investigation of water-soluble chlorophyll pigments for antimicrobial photodynamic therapy. Dye. Pigment. 2018, 149, 553–559. [Google Scholar] [CrossRef]
- Tada, D.B.; Baptista, M.S. Photosensitizing nanoparticles and the modulation of ROS generation. Front. Chem. 2015, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gierschner, J.; Lüer, L.; Milián-Medina, B.; Oelkrug, D.; Egelhaaf, H.-J. Highly Emissive H-Aggregates or Aggregation-Induced Emission Quenching? The Photophysics of All-Trans para-Distyrylbenzene. J. Phys. Chem. Lett. 2013, 4, 2686–2697. [Google Scholar] [CrossRef]
- Gierschner, J.; Park, S.Y. Luminescent distyrylbenzenes: Tailoring molecular structure and crystalline morphology. J. Mater. Chem. C 2013, 1, 5818–5832. [Google Scholar] [CrossRef]
- Kasha, M. Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiat. Res. 2012, 178, AV27–AV34. [Google Scholar] [CrossRef]
- Sauer, M.; Hofkens, J.; Enderlein, J. Basic Principles of Fluorescence Spectroscopy. In Handbook of Fluorescence Spectroscopy and Imaging: From Single Molecules to Ensembles; John Wiley & Sons: Weinheim, Germany, 2011; pp. 1–30. [Google Scholar] [CrossRef]
- Rodríguez, H.B.; Román, E.S. Effect of Concentration on the Photophysics of Dyes in Light-Scattering Materials. Photochem. Photobiol. 2013, 89, 1273–1282. [Google Scholar] [CrossRef]
- Sisamakis, E.; Valeri, A.; Kalinin, S.; Rothwell, P.J.; Seidel, C.A.M. Accurate Single-Molecule FRET Studies Using Multiparameter Fluorescence Detection. Methods Enzymol. 2010, 475, 455–514. [Google Scholar]
- Kwak, S.-Y.; Lim, D.-S.; Bae, S.-M.; Kim, Y.-W.; Lee, J.-M.; Namkoong, S.-E.; Han, S.-J.; Kim, J.-K.; Lee, C.-H.; Chun, H.J.; et al. Photodynamic effects of Radachlorin® on cervical cancer model. J. Porphyrins Phthalocyanines 2005, 9, 835–840. [Google Scholar] [CrossRef]
- Santos Vitorio, G.D.; de Almeida, R.M.S.; Pinto, J.G.; Fontana, L.C.; Ferreira-Strixino, J. Analysis of the effects of Photodynamic therapy with Photodithazine on the treatment of 9l/lacZ cells, in vitro study. Photodiagnosis Photodyn. Ther. 2021, 34, 102233. [Google Scholar] [CrossRef]
- Mitra, I.; Mukherjee, S.; Reddy, B.V.P.; Dasgupta, S.; Bose, K.J.C.; Mukherjee, S.; Linert, W.; Moi, S.C. Benzimidazole based Pt(ii) complexes with better normal cell viability than cisplatin: Synthesis, substitution behavior, cytotoxicity, DNA binding and DFT study. RSC Adv. 2016, 6, 76600–76613. [Google Scholar] [CrossRef] [Green Version]
- Stepanenko, A.; Dmitrenko, V. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene 2015, 574, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Barone, D.G.; Lawrie, T.; Hart, M.G. Image guided surgery for the resection of brain tumours. Cochrane Database Syst. Rev. 2014, 2014, CD009685. [Google Scholar] [CrossRef]
- Brauchle, E.; Thude, S.; Brucker, S.Y.; Schenke-Layland, K. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci. Rep. 2014, 4, 4698. [Google Scholar] [CrossRef] [Green Version]
- Remple, K.; Stone, L. Assessment of GFP Expression and Viability Using the Tali Image-Based Cytometer. J. Vis. Exp. 2011, 57, e3659. [Google Scholar] [CrossRef]
- Turubanova, V.D.; Balalaeva, I.V.; Mishchenko, T.A.; Catanzaro, E.; Alzeibak, R.; Peskova, N.N.; Efimova, I.; Bachert, C.; Mitroshina, E.V.; Krysko, O.; et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J. Immunother. Cancer 2019, 7, 350. [Google Scholar] [CrossRef]
- Wen, L.Y.; Bae, S.-M.; Chun, H.J.; Park, K.-S.; Ahn, W.S. Therapeutic effects of systemic photodynamic therapy in a leukemia animal model using A20 cells. Lasers Med. Sci. 2011, 27, 445–452. [Google Scholar] [CrossRef]
- Hensley, K.; Robinson, K.A.; Gabbita, S.P.; Salsman, S.; Floyd, R.A. REACTIVE OXYGEN SPECIES, CELL SIGNALING, AND CELL INJURY. Free Radic. Biol. Med. 2000, 28, 1456–1462. [Google Scholar] [CrossRef]
- Matés, J.M.; Jiménez, F.M.S. Role of reactive oxygen species in apoptosis: Implications for cancer therapy. Int. J. Biochem. Cell Biol. 1999, 32, 157–170. [Google Scholar] [CrossRef]
- Ikeda, K.; Kajiwara, K.; Tanabe, E.; Tokumaru, S.; Kishida, E.; Masuzawa, Y.; Kojo, S. Involvement of hydrogen peroxide and hydroxyl radical in chemically induced apoptosis of HL-60 cells. Biochem. Pharmacol. 1999, 57, 1361–1365. [Google Scholar] [CrossRef]
- Matsura, T.; Kai, M.; Fujii, Y.; Ito, H.; Yamada, K. Hydrogen peroxide-induced apoptosis in HL-60 cells requires caspase-3 activation. Free Radic. Res. 1999, 30, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.S.; Cotter, T. Apoptosis or necrosis: Intracellular levels of glutathione influence mode of cell death. Biochem. Pharmacol. 1994, 48, 675–681. [Google Scholar] [CrossRef]
- Benito-Miguel, M.; Blanco, M.D.; Gómez, C. Assessment of sequential combination of 5-fluorouracil-loaded-chitosan-nanoparticles and ALA-photodynamic therapy on HeLa cell line. Photodiagnosis Photodyn. Ther. 2015, 12, 466–475. [Google Scholar] [CrossRef]
- Benov, L. Photodynamic Therapy: Current Status and Future Directions. Med. Princ. Pr. 2015, 24, 14–28. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Grecco, C.; Pratavieira, S.; Bagnato, V.; Kurachi, C. Comparison of two photosensitizers in photodynamic therapy using light pulses in femtosecond regime: An animal study. Int. Soc. Opt. Photonics 2016, 9694, 969417. [Google Scholar] [CrossRef]
- Curtin, J.; Donovan, M.; Cotter, T.G. Regulation and measurement of oxidative stress in apoptosis. J. Immunol. Methods 2002, 265, 49–72. [Google Scholar] [CrossRef] [Green Version]
- Davis, W.; Ronai, Z.; Tew, K.D. Cellular thiols and reactive oxygen species in drug-induced apoptosis. J. Pharmacol. Exp. Ther. 2001, 296, 1–6. [Google Scholar]
- Gabbita, S.; Robinson, K.A.; Stewart, C.A.; Floyd, R.A.; Hensley, K. Redox Regulatory Mechanisms of Cellular Signal Transduction. Arch. Biochem. Biophys. 2000, 376, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Matés, J.M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 2000, 153, 83–104. [Google Scholar] [CrossRef]
- Yu, B.P. Cellular Defenses against Damage from Reactive Oxygen Species. Physiol. Rev. 1994, 74, 139–162. [Google Scholar] [CrossRef] [PubMed]
- Slater, A.F.G.; Stefan, C.; Nobel, I.; Dobbelsteen, D.J.V.D.; Orrenius, S. Signalling mechanisms and oxidative stress in apoptosis. Toxicol. Lett. 1995, 82–83, 149–153. [Google Scholar] [CrossRef]
- Chandra, J.; Samali, A.; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 2000, 29, 323–333. [Google Scholar] [CrossRef]
- McConkey, D.J. Biochemical determinants of apoptosis and necrosis. Toxicol. Lett. 1998, 99, 157–168. [Google Scholar] [CrossRef]
- Bernal, C.; Ribeiro, A.O.; Andrade, G.P.; Perussi, J.R. Photodynamic efficiency of hypericin compared with chlorin and hematoporphyrin derivatives in HEp-2 and Vero epithelial cell lines. Photodiagnosis Photodyn. Ther. 2015, 12, 176–185. [Google Scholar] [CrossRef]
- Moan, J.; Berg, K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 1991, 53, 549–553. [Google Scholar] [CrossRef]
- de Almeida, R.M.S.; Fontana, L.C.; Vitorio, G.D.S.; Correia Pereira, A.H.; Soares, C.P.; Pinto, J.G.; Ferreira-Strixino, J. Analysis of the effect of photodynamic therapy with Fotoenticine on gliosarcoma cells. Photodiagnosis Photodyn. Ther. 2020, 30, 101685. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontana, L.C.; Pinto, J.G.; Magalhães, J.A.; Tada, D.B.; de Almeida, R.M.S.; Pacheco-Soares, C.; Ferreira-Strixino, J. Comparison of the Photodynamic Effect of Two Chlorins, Photodithazine and Fotoenticine, in Gliosarcoma Cells. Photochem 2022, 2, 165-180. https://doi.org/10.3390/photochem2010013
Fontana LC, Pinto JG, Magalhães JA, Tada DB, de Almeida RMS, Pacheco-Soares C, Ferreira-Strixino J. Comparison of the Photodynamic Effect of Two Chlorins, Photodithazine and Fotoenticine, in Gliosarcoma Cells. Photochem. 2022; 2(1):165-180. https://doi.org/10.3390/photochem2010013
Chicago/Turabian StyleFontana, Letícia Corrêa, Juliana Guerra Pinto, Jéssica Aparecida Magalhães, Dayane Batista Tada, Rainara Moreno Sanches de Almeida, Cristina Pacheco-Soares, and Juliana Ferreira-Strixino. 2022. "Comparison of the Photodynamic Effect of Two Chlorins, Photodithazine and Fotoenticine, in Gliosarcoma Cells" Photochem 2, no. 1: 165-180. https://doi.org/10.3390/photochem2010013
APA StyleFontana, L. C., Pinto, J. G., Magalhães, J. A., Tada, D. B., de Almeida, R. M. S., Pacheco-Soares, C., & Ferreira-Strixino, J. (2022). Comparison of the Photodynamic Effect of Two Chlorins, Photodithazine and Fotoenticine, in Gliosarcoma Cells. Photochem, 2(1), 165-180. https://doi.org/10.3390/photochem2010013