Mapping Spatial Variability of Sugarcane Foliar Nitrogen, Phosphorus, Potassium and Chlorophyll Concentrations Using Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Method
3. Results
3.1. Separating Sugarcane Coverage
3.2. Exploratory Data Analysis
3.3. Mapping Sugarcane Nutrients
3.4. Analyzing Spectral Variations Within the Study Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, G. Sugarcane, 2nd ed.; Blackwell Science Ltd.: Oxford, UK, 2004; p. 44. [Google Scholar]
- Vignola, R.; Poveda Coto, K.; Watler, W.; Vargas Céspedes, A.; Berrocal Solís, Á. Prácticas Efectivas para la Reducción de Impactos por Eventos Climáticos; por el Ministerio de Agricultura y Ganadería: San José, Costa Rica, 2018. [Google Scholar]
- Chaves Solera, M.; Chavarria Soto, E. Distribución Geográfica de las Plantaciones Comerciales de Caña de Azúcar en Costa Rica según Altitud y Localidad. In Entre Cañeros; por la Liga Agrícola Industrial de la Caña de Azúca: San José, Costa Rica, 2021. [Google Scholar]
- Castillo, R.; Mendoza, J.; Garcés, F. Factores que Afectan la Calidad de la Caña de Azúcar; Centro de Investigación de la Caña de Azúcar del Ecuador: Guayaquil, Ecuador, 2015. [Google Scholar]
- Yara, S.A. Nutrición Vegetal Caña de Azúcar. Available online: https://www.yara.cr/nutricion-vegetal/cana-de-azucar/resumen-nutricional/ (accessed on 20 July 2024).
- de Oliveira Junior, A.C.; Silva dos Santos, L.N.; Reis, M.N.O.; Vitorino, L.C.; Bessa, L.A.; Teixeira, M.B.; Soares, F.A.L. Effect of Mineral and Organic Nitrogen Sources on Vegetative Development, Nutrition, and Yield of Sugarcane. Agronomy 2023, 13, 1627. [Google Scholar] [CrossRef]
- Loayza, H.; Calderón, A.; Gutiérrez, R.O.; Céspedes, E.; Quiroz, R. Estimación de las Concentraciones Relativas de Clorofila en Foliolos de Papa (Solanum tuberosum L.) Utilizando Técnicas de Reflectancia de la Vegetación. Ecol. Apl. 2023, 21, 91–101. [Google Scholar] [CrossRef]
- Mendoza-Tafolla, R.; Juarez-Lopez, P.; Ontiveros-Capurata, R.; Alia-Tejacal, I.; Guillén-Sánchez, D.; Villegas-Torres, O.; Chávez-Bárcenas, A. Estimation of concentration of chlorophyll, N, and biomass using non-destructive measurements in arugula (Eruca sativa). Bioagro 2022, 34, 151–162. [Google Scholar] [CrossRef]
- Yara, S.A. Yara N-Tester. Available online: https://www.yara.com.ar/nutricion-vegetal/portafolio-de-agricultura-digital/n-tester/ (accessed on 22 September 2024).
- Pereira da Silva, G.; Justino Chiaia, H.L. Limitation Due to Nutritional Deficiency and Excess in Sugarcane Using the Integral Diagnosis and Recommendation System (DRIS) and Nutritional Composition Diagnosis (CND). Commun. Soil Sci. Plant Anal. 2021, 52, 1458–1467. [Google Scholar] [CrossRef]
- Borges, C.S.; Weindorf, D.C.; Carvalho, G.S.; Guilherme, L.R.G.; Takayama, T.; Curi, N.; Lima, G.J.E.O.; Ribeiro, B.T. Foliar Elemental Analysis of Brazilian Crops via Portable X-ray Fluorescence Spectrometry. Sensors 2020, 20, 2509. [Google Scholar] [CrossRef]
- Narmilan, A.; Gonzalez, F.; Salgadoe, A.; Powell, K. Detection of White Leaf Disease in Sugarcane Using Machine Learning Techniques over UAV Multispectral Images. Drones 2022, 6, 230. [Google Scholar] [CrossRef]
- Abebe, G.; Tadesse, T.; Gessesse, B. Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia. J. Indian Soc. Remote Sens. 2022, 50, 143–157. [Google Scholar] [CrossRef]
- Martins, J.A.; Fiorio, P.R.; Silva, C.A.A.C.; Demattê, J.A.M.; Silva Barros, P.P.d. Application of Vegetative Indices for Leaf Nitrogen Estimation in Sugarcane Using Hyperspectral Data. Sugar Tech 2024, 26, 160–170. [Google Scholar] [CrossRef]
- Lin, W.; Yu, X.; Xu, D.; Sun, T.; Sun, Y. Effect of Dust Deposition on Chlorophyll Concentration Estimation in Urban Plants from Reflectance and Vegetation Indexes. Remote Sens. 2021, 13, 3570. [Google Scholar] [CrossRef]
- Li, X.; Ba, Y.; Zhang, M.; Nong, M.; Yang, C.; Zhang, S. Sugarcane Nitrogen Concentration and Irrigation Level Prediction Based on UAV Multispectral Imagery. Sensors 2022, 22, 2711. [Google Scholar] [CrossRef]
- Arellano-Valle, R.B.; Bolfarine, H.; Lachos, V.H. Bayesian Inference for Skew-normal Linear Mixed Models. J. Appl. Stat. 2007, 34, 663–682. [Google Scholar] [CrossRef]
- Narmilan, A.; Gonzalez, F.; Salgadoe, A.S.A.; Kumarasiri, U.W.L.M.; Weerasinghe, H.A.S.; Kulasekara, B.R. Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote Sens. 2022, 14, 1140. [Google Scholar] [CrossRef]
- Hernández Lalinde, J.D.; Espinosa Castro, F.; Rodríguez, J.E.; Chacón Rangel, J.G.; Toloza Sierra, C.A.; Arenas Torrado, M.K.; Carillo Sierra, S.M.; Bermúdez Pirela, V.J. Sobre el uso adecuado del coeficiente de correlación de Pearson: Definición, propiedades y suposiciones. Arch. Venez. De Farmacol. Y Ter. 2018, 37, 587–601. [Google Scholar]
- Lofton, J.; Tubana, B.S.; Kanke, Y.; Teboh, J.; Viator, H. Predicting Sugarcane Response to Nitrogen Using a Canopy Reflectance-Based Response Index Value. Agron. J. 2012, 104, 106–113. [Google Scholar] [CrossRef]
- Vasconcelos, J.C.S.; Speranza, E.A.; Antunes, J.F.G.; Barbosa, L.A.F.; Christofoletti, D.; Severino, F.J.; de Almeida Cançado, G.M. Development and Validation of a Model Based on Vegetation Indices for the Prediction of Sugarcane Yield. AgriEngineering 2023, 5, 698–719. [Google Scholar] [CrossRef]
- Sumesh, K.C.; Ninsawat, S.; Som-ard, J. Integration of RGB-based vegetation index, crop surface model and object-based image analysis approach for sugarcane yield estimation using unmanned aerial vehicle. Comput. Electron. Agric. 2021, 180, 105903. [Google Scholar] [CrossRef]
- Todd, J.; Johnson, R. Prediction of Ratoon Sugarcane Family Yield and Selection Using Remote Imagery. Agronomy 2021, 11, 1273. [Google Scholar] [CrossRef]
- Susantoro, T.M.; Wikantika, K.; Saepuloh, A.; Harsolumakso, A.H. Selection of vegetation indices for mapping the sugarcane condition around the oil and gas field of North West Java Basin, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 149, 012001. [Google Scholar] [CrossRef]
- Mouafik, M.; Chakhchar, A.; Fouad, M.; El Aboudi, A. Remote Sensing Technologies for Monitoring Argane Forest Stands: A Comprehensive Review. Geographies 2024, 4, 441–461. [Google Scholar] [CrossRef]
- Cárdenes Díaz, G. Fusión de Imágenes Multiespectrales y Datos LiDAR para el Análisis Forestal; Universidad de Las Palmas de Gran Canaria: Gran Canaria, Spain, 2023. [Google Scholar]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Leandro, E.R.; Heenkenda, M.K.; Romero, K.F. Estimating Sugarcane Maturity Using High Spatial Resolution Remote Sensing Images. Crops 2024, 4, 333–347. [Google Scholar] [CrossRef]
- Abrougui, K.; Gabsi, K.; Mercatoris, B.; Khemis, C.; Amami, R.; Chehaibi, S. Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). Soil Tillage Res. 2019, 190, 202–208. [Google Scholar] [CrossRef]
- Chowdhury, S.; Lin, Y.; Liaw, B.; Kerby, L. Evaluation of Tree Based Regression over Multiple Linear Regression for Non-normally Distributed Data in Battery Performance. arXiv 2021, arXiv:2111.02513. [Google Scholar] [CrossRef]
- Romero, K. (Cartago, Costa Rica). Interview of study area characteristics. Personal Communication, 2024. [Google Scholar]
- Flores, D.; Hernández, F.; Pérez, O. Épocas de muestreo y posición de la hoja en el análisis foliar para diagnóstico de nitrógeno en variedades de caña de azúcar en Guatemala. Programa De Agron. De CENGICAÑA 2019, 241–248. Available online: https://cengicana.org/files/20150902101613791.pdf (accessed on 14 October 2024).
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Albuquerque, J.A.; da Costa, A.; Pértile, P.; da Silva, F.R. Water retention and availability in soils of the State of Santa Catarina-Brazil: Effect of textural classes, soil classes and lithology. Rev. Bras. De Ciência Do Solo 2013, 37, 1535–1548. [Google Scholar] [CrossRef]
- Labs, A.G.Q. Crop Nutritional Monitoring. Available online: https://www.agqlabs.us.com/agronomy/crop-nutritional-monitoring/ (accessed on 22 September 2024).
- Yara. How does the N-Tester work? How can the N-Tester support me? In AtFarm; Yara International ASA: Oslo, Norway, 2024. [Google Scholar]
- Enterprise, D.J.I. Matrice 300 RTK Specs. Available online: https://enterprise.dji.com/matrice-300/specs (accessed on 9 September 2024).
- MicaSense. MicaSense Series RedEdge-P. Available online: https://ageagle.com/drone-sensors/rededge-p-high-res-multispectral-camera/ (accessed on 22 September 2024).
- Enterprise, D.J.I. Zenmuse L1 Specs. Available online: https://enterprise.dji.com/zenmuse-l1/specs (accessed on 9 September 2024).
- Enterprise, D.J.I. D-RTK 2 Specs. Available online: https://www.dji.com/global/d-rtk-2/info (accessed on 9 September 2024).
- Enterprise, D. DJI Terra [Software]. Available online: https://enterprise.dji.com/dji-terra (accessed on 9 September 2024).
- Pix4D. Pix4D Mapper [Software]. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/ (accessed on 22 September 2024).
- Zhang, Y.; Zhang, Y.; Zhang, Y.; Li, X. Automatic Extraction of DTM from Low Resolution DSM by Twosteps Semi-Global Filtering. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 249–255. [Google Scholar] [CrossRef]
- Esri. ArcGIS [Software]. Available online: https://www.esri.com/en-us/arcgis/geospatial-platform/overview?srsltid=AfmBOooXzmK7AyRTAx6SlasPwaz0AsAAXCmy7EGwK0E513weKY_rJrS4 (accessed on 22 September 2024).
- Geospatial, N. ENVI [Software]. Available online: https://www.nv5geospatialsoftware.com/Products/ENVI (accessed on 22 September 2024).
- Stenroos, M.; Dzubak, J. Multiple Linear Regression R Guide. Available online: https://rpubs.com/MStenroos/385153 (accessed on 15 September 2024).
- Roque López, J. Técnicas de Selección de Variables en Regresión Lineal Múltiple. Master’s Thesis, Universidad Internacional de Andalucía, Sevilla, Spain, 2022. [Google Scholar]
- Chikezie, I.J.; Eme, J.U. Content Validity Index of Basic Education Certificate Examination (BECE) Test Items in Basic Science and Technology (BST). Br. J. Educ. 2023, 11, 7–24. [Google Scholar] [CrossRef]
- Zhang, L.; Song, X.; Niu, Y.; Zhang, H.; Wang, A.; Zhu, Y.; Zhu, X.; Chen, L.; Zhu, Q. Estimating Winter Wheat Plant Nitrogen Content by Combining Spectral and Texture Features Based on a Low-Cost UAV RGB System throughout the Growing Season. Agriculture 2024, 14, 456. [Google Scholar] [CrossRef]
- Oliveros, N.; Tinini, R.; Costa, D.d.S.; Ramos, R.; Wetterich, C.; Teruel, B. Predictive Models of Chlorophyll Content in Sugarcane Seedlings using Spectral Images. Eng. Agrícola 2021, 41, 475–484. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ 2019, 6, e6240. [Google Scholar] [CrossRef]
- Al-Azzawi, H.A.; Ghassan, J.Z. Effect of Planting Date and Inorganic and Organic of Nitrogen on Growth and Yield of Kohlrabi (Brassica oleracea var. Gongylodes). IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 042017. [Google Scholar] [CrossRef]
- Niedbala, G. Application of multiple linear regression for multi-criteria yield prediction of winter wheat. J. Res. Appl. Agric. Eng. 2018, 63, 125–131. [Google Scholar]
- Cheusheva, S. Linear Regression Analysis in Excel. Available online: https://www.ablebits.com/office-addins-blog/linear-regression-analysis-excel/ (accessed on 14 October 2024).
- Wang, F.; Yang, M.; Ma, L.; Zhang, T.; Qin, W.; Li, W.; Zhang, Y.; Sun, Z.; Wang, Z.; Li, F.; et al. Estimation of Above-Ground Biomass of Winter Wheat Based on Consumer-Grade Multispectral UAV. Remote Sens. 2022, 14, 1251. [Google Scholar] [CrossRef]
- Qu, T.; Li, Y.; Zhao, Q.; Yin, Y.; Wang, Y.; Li, F.; Zhang, W. Drone-Based Multispectral Remote Sensing Inversion for Typical Crop Soil Moisture under Dry Farming Conditions. Agriculture 2024, 14, 484. [Google Scholar] [CrossRef]
- Andreu, A.; Carpintero, E.; González-Dugo, M. Teledetección Para Agricultura; Instituto de Investigación y Formación Agraria y Pesquera (IFAPA): Sevilla, Spain, 2018. [Google Scholar]
- Senyurek, V.; Farhad, M.M.; Gurbuz, A.C.; Kurum, M.; Adeli, A. Fusion of Reflected GPS Signals With Multispectral Imagery to Estimate Soil Moisture at Subfield Scale From Small UAS Platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6843–6855. [Google Scholar] [CrossRef]
- Kumar, N.; Sow, S.; Rana, L.; Kumar, V.; Kumar, J.; Pramanick, B.; Singh, A.K.; Alkeridis, L.A.; Sayed, S.; Gaber, A.; et al. Productivity, water use efficiency and soil properties of sugarcane as influenced by trash mulching and irrigation regimes under different planting systems in sandy loam soils. Front. Sustain. Food Syst. 2024, 8, 1340551. [Google Scholar] [CrossRef]
- Okamoto, K.; Goto, S.; Anzai, T.; Ando, S. Nitrogen Leaching and Nitrogen Balance under Differing Nitrogen Fertilization for Sugarcane Cultivation on a Subtropical Island. Water 2021, 13, 740. [Google Scholar] [CrossRef]
- Rupngam, T.; Messiga, A.J.; Karam, A. Solubility of soil phosphorus in extended waterlogged conditions: An incubation study. Heliyon 2023, 9, e13502. [Google Scholar] [CrossRef]
- Hossne Garcia, A.; Mendez Natera, J.; Velazquez, C.; Gil, A. Sugarcane root under regular soil water content, compaction, irrigation and shear stress. Saber 2016, 28, 480–493. [Google Scholar]
Index | Equation | Purpose | Reference |
---|---|---|---|
RI | To estimate the response of the plants to the nutrient concentrations present in them. | [20] | |
GCI | To estimate the leaf area index and green leaf biomass. | [12] | |
VARI | To indicate the green level of a specific area in an image and it can also be used to detect stress in areas. | [21] | |
ExG | 1 | To estimate biomass and used to extract sugarcane pixels in the sample plot. | [22] |
NGBDI | To predict canopy nitrogen concentration. | [16] | |
TGI | 2 | To estimate nitrogen requirements and chlorophyll content in the leaves. | [23] |
LCI | To relate the concentration of nutrients in the plant and determine the synthesis of chlorophyll. | [12] | |
SIPI | To estimate the concentration of pigments and nutrients in leaves related to chlorophyll. | [24] |
Chlorophyll | Nitrogen | Phosphorus | Potassium | ||||
---|---|---|---|---|---|---|---|
Independent Variable | Correlation Coefficient | Independent Variable | Correlation Coefficient | Independent Variable | Correlation Coefficient | Independent Variable | Correlation Coefficient |
RI | 0.616 | G | −0.665 | Plant Height | −0.898 | G | −0.545 |
ExG | −0.671 | RE | −0.600 | GCI | −0.655 | B | −0.557 |
NGBDI | −0.629 | NIR | −0.611 | NIR | −0.664 | RE | −0.517 |
TGI | −0.651 | TGI | −0.729 | LCI | −0.779 | TGI | −0.520 |
Value | Chlorophyll | Nitrogen | Phosphorus | Potassium |
---|---|---|---|---|
Coefficient of Determination (R2) | 0.61 | 0.71 | 0.96 | 0.44 |
Adjusted coefficient of determination (R2 adjust) | 0.50 | 0.60 | 0.89 | 0.28 |
p-value | 0.0106 | 0.005 | 0.07 | 0.41 |
RMSE | 13.95 | 0.05 | 0.002 | 0.07 |
MAE | 11.64 | 0.04 | 0.002 | 0.06 |
Variable | Average Values for Sample Plots | |
---|---|---|
Measured | Predicted | |
Chlorophyll (μmoles) | 605.88 | 619.31 |
Nitrogen (%) | 2.02 | 2.13 |
Phosphorus (%) | 0.22 | 0.29 |
Potassium (%) | 1.49 | 1.66 |
Average Nutrients and Other Characteristics | Healthy Green Areas | Distinct Areas with Less Green Leaves |
---|---|---|
Chlorophyll | 603.4 μmoles | 578.6 μmoles |
N | 1.82% | 1.27% |
P | 0.32% | 0.37% |
K | 1.21% | 0.88% |
Elevation | 29.0–30.8 m | 28.8–30.6 m |
Plant height | 3.11 m | 2.09 m |
Density | 97.64% | 93.82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picado, E.F.; Romero, K.F.; Heenkenda, M.K. Mapping Spatial Variability of Sugarcane Foliar Nitrogen, Phosphorus, Potassium and Chlorophyll Concentrations Using Remote Sensing. Geomatics 2025, 5, 3. https://doi.org/10.3390/geomatics5010003
Picado EF, Romero KF, Heenkenda MK. Mapping Spatial Variability of Sugarcane Foliar Nitrogen, Phosphorus, Potassium and Chlorophyll Concentrations Using Remote Sensing. Geomatics. 2025; 5(1):3. https://doi.org/10.3390/geomatics5010003
Chicago/Turabian StylePicado, Ericka F., Kerin F. Romero, and Muditha K. Heenkenda. 2025. "Mapping Spatial Variability of Sugarcane Foliar Nitrogen, Phosphorus, Potassium and Chlorophyll Concentrations Using Remote Sensing" Geomatics 5, no. 1: 3. https://doi.org/10.3390/geomatics5010003
APA StylePicado, E. F., Romero, K. F., & Heenkenda, M. K. (2025). Mapping Spatial Variability of Sugarcane Foliar Nitrogen, Phosphorus, Potassium and Chlorophyll Concentrations Using Remote Sensing. Geomatics, 5(1), 3. https://doi.org/10.3390/geomatics5010003